{"title":"时空轨迹的周期性模式挖掘:综述","authors":"Dongzhi Zhang, Kyungmi Lee, Ickjai Lee","doi":"10.1109/ISKE.2015.92","DOIUrl":null,"url":null,"abstract":"The discovery of hidden and valuable periodic patterns could reveal valuable information to the data analyst. Periodic patterns extracted from spatio-temporal trajectories of moving objects unveil regular movement behavior. This paper surveys the breath and depth review of spatio-temporal periodic pattern mining and presents an overview of periodic pattern discovering methods from spatio-temporal trajectory data.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Periodic Pattern Mining for Spatio-Temporal Trajectories: A Survey\",\"authors\":\"Dongzhi Zhang, Kyungmi Lee, Ickjai Lee\",\"doi\":\"10.1109/ISKE.2015.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of hidden and valuable periodic patterns could reveal valuable information to the data analyst. Periodic patterns extracted from spatio-temporal trajectories of moving objects unveil regular movement behavior. This paper surveys the breath and depth review of spatio-temporal periodic pattern mining and presents an overview of periodic pattern discovering methods from spatio-temporal trajectory data.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodic Pattern Mining for Spatio-Temporal Trajectories: A Survey
The discovery of hidden and valuable periodic patterns could reveal valuable information to the data analyst. Periodic patterns extracted from spatio-temporal trajectories of moving objects unveil regular movement behavior. This paper surveys the breath and depth review of spatio-temporal periodic pattern mining and presents an overview of periodic pattern discovering methods from spatio-temporal trajectory data.