稀疏源的非线性盲源分离

Bahram Ehsandoust, B. Rivet, C. Jutten, M. Babaie-zadeh
{"title":"稀疏源的非线性盲源分离","authors":"Bahram Ehsandoust, B. Rivet, C. Jutten, M. Babaie-zadeh","doi":"10.1109/EUSIPCO.2016.7760515","DOIUrl":null,"url":null,"abstract":"Blind Source Separation (BSS) is the problem of separating signals which are mixed through an unknown function from a number of observations, without any information about the mixing model. Although it has been mathematically proven that the separation can be done when the mixture is linear, there is not any proof for the separability of nonlinearly mixed signals. Our contribution in this paper is performing nonlinear BSS for sparse sources. It is shown in this case, sources are separable even if the problem is under-determined (the number of observations is less than the number of source signals). However in the most general case (when the nonlinear mixing model can be of any kind and there is no side-information about that), an unknown nonlinear transformation of each source is reconstructed. It is shown why the problem reconstructing the exact sources is severely ill-posed and impossible to do without any other information.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nonlinear blind source separation for sparse sources\",\"authors\":\"Bahram Ehsandoust, B. Rivet, C. Jutten, M. Babaie-zadeh\",\"doi\":\"10.1109/EUSIPCO.2016.7760515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind Source Separation (BSS) is the problem of separating signals which are mixed through an unknown function from a number of observations, without any information about the mixing model. Although it has been mathematically proven that the separation can be done when the mixture is linear, there is not any proof for the separability of nonlinearly mixed signals. Our contribution in this paper is performing nonlinear BSS for sparse sources. It is shown in this case, sources are separable even if the problem is under-determined (the number of observations is less than the number of source signals). However in the most general case (when the nonlinear mixing model can be of any kind and there is no side-information about that), an unknown nonlinear transformation of each source is reconstructed. It is shown why the problem reconstructing the exact sources is severely ill-posed and impossible to do without any other information.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

盲源分离(BSS)是在没有任何混合模型信息的情况下,从多个观测值中分离出通过未知函数混合的信号的问题。虽然数学上已经证明了当混合是线性时可以分离,但对于非线性混合信号的可分离性还没有任何证明。我们在本文中的贡献是对稀疏源执行非线性BSS。在这种情况下,即使问题是不确定的(观测的数量少于源信号的数量),源也是可分离的。然而,在最一般的情况下(当非线性混合模型可以是任何类型且没有旁信息时),重构每个源的未知非线性变换。它说明了为什么重建精确源的问题是严重不适定的,并且在没有任何其他信息的情况下不可能做到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear blind source separation for sparse sources
Blind Source Separation (BSS) is the problem of separating signals which are mixed through an unknown function from a number of observations, without any information about the mixing model. Although it has been mathematically proven that the separation can be done when the mixture is linear, there is not any proof for the separability of nonlinearly mixed signals. Our contribution in this paper is performing nonlinear BSS for sparse sources. It is shown in this case, sources are separable even if the problem is under-determined (the number of observations is less than the number of source signals). However in the most general case (when the nonlinear mixing model can be of any kind and there is no side-information about that), an unknown nonlinear transformation of each source is reconstructed. It is shown why the problem reconstructing the exact sources is severely ill-posed and impossible to do without any other information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信