{"title":"基于弛豫的半导体器件仿真谐波平衡技术","authors":"B. Troyanovsky, Zhiping Yu, L. So, R. Dutton","doi":"10.1109/ICCAD.1995.480206","DOIUrl":null,"url":null,"abstract":"Harmonic and intermodulation distortion effects play an important role in numerous analog applications, particularly in such areas as wireless communication systems. In this paper, we present a two-dimensional harmonic balance semiconductor device simulator which accurately models these nonlinear effects at the physical (drift-diffusion) level. The simulator is based on Stanford University's PISCES code, and supports the full range of physical models and features present in the time-domain version of the program. A modified block Gauss-Seidel-Newton nonlinear relaxation scheme is developed to efficiently handle the extremely large size of two-dimensional harmonic balance semiconductor device simulation problems.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"508 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Relaxation-based harmonic balance technique for semiconductor device simulation\",\"authors\":\"B. Troyanovsky, Zhiping Yu, L. So, R. Dutton\",\"doi\":\"10.1109/ICCAD.1995.480206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmonic and intermodulation distortion effects play an important role in numerous analog applications, particularly in such areas as wireless communication systems. In this paper, we present a two-dimensional harmonic balance semiconductor device simulator which accurately models these nonlinear effects at the physical (drift-diffusion) level. The simulator is based on Stanford University's PISCES code, and supports the full range of physical models and features present in the time-domain version of the program. A modified block Gauss-Seidel-Newton nonlinear relaxation scheme is developed to efficiently handle the extremely large size of two-dimensional harmonic balance semiconductor device simulation problems.\",\"PeriodicalId\":367501,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"508 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1995.480206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relaxation-based harmonic balance technique for semiconductor device simulation
Harmonic and intermodulation distortion effects play an important role in numerous analog applications, particularly in such areas as wireless communication systems. In this paper, we present a two-dimensional harmonic balance semiconductor device simulator which accurately models these nonlinear effects at the physical (drift-diffusion) level. The simulator is based on Stanford University's PISCES code, and supports the full range of physical models and features present in the time-domain version of the program. A modified block Gauss-Seidel-Newton nonlinear relaxation scheme is developed to efficiently handle the extremely large size of two-dimensional harmonic balance semiconductor device simulation problems.