{"title":"ARKTOS新发展","authors":"B.H.J.W. Seligman, F. Bercha","doi":"10.5957/icetech-2012-140","DOIUrl":null,"url":null,"abstract":"The ARKTOS vehicle is an amphibious craft system capable of operation in a wide range of Arctic ice conditions and seastates. It is approved as an evacuation system by various regulators, including the US Coast Guard (USCG), and is currently operational in several marine cold regions as an EER and utility system. Following is a description of recent additional operational and ergonomical tests of the 52 Person USCG Approved ARKTOS Evacuation Craft. This description is followed by a summary of some of the ongoing developments for the system in oil spill control, ice management, and its extension to new applications in forestry and pipeline construction in swampy locations. As part of a reliability investigation of the ARKTOS EER capability, a series of non-Arctic calm condition manoeuvrability and performance drills were carried out to focus on both global performance and operator ergonomic factors. These tests were carried out at a temperate location in the Fraser River Delta and Robert’s Bank, near Vancouver, B.C. Operation of the Craft in deep water with jets only, shallow water using both tracks and jets, and on tidal flats above water using tracks only. The planned utilization of the Craft by ENI Petroleum, Inc. in the Beaufort Sea is described. Next, descriptions of some other current new developments for oil spill cleanup, river and sea ice management, and disaster response applications are given. Conclusions and recommendations for further developments and reliability improvements are given.","PeriodicalId":177475,"journal":{"name":"Day 4 Thu, September 20, 2012","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARKTOS New Developments\",\"authors\":\"B.H.J.W. Seligman, F. Bercha\",\"doi\":\"10.5957/icetech-2012-140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ARKTOS vehicle is an amphibious craft system capable of operation in a wide range of Arctic ice conditions and seastates. It is approved as an evacuation system by various regulators, including the US Coast Guard (USCG), and is currently operational in several marine cold regions as an EER and utility system. Following is a description of recent additional operational and ergonomical tests of the 52 Person USCG Approved ARKTOS Evacuation Craft. This description is followed by a summary of some of the ongoing developments for the system in oil spill control, ice management, and its extension to new applications in forestry and pipeline construction in swampy locations. As part of a reliability investigation of the ARKTOS EER capability, a series of non-Arctic calm condition manoeuvrability and performance drills were carried out to focus on both global performance and operator ergonomic factors. These tests were carried out at a temperate location in the Fraser River Delta and Robert’s Bank, near Vancouver, B.C. Operation of the Craft in deep water with jets only, shallow water using both tracks and jets, and on tidal flats above water using tracks only. The planned utilization of the Craft by ENI Petroleum, Inc. in the Beaufort Sea is described. Next, descriptions of some other current new developments for oil spill cleanup, river and sea ice management, and disaster response applications are given. Conclusions and recommendations for further developments and reliability improvements are given.\",\"PeriodicalId\":177475,\"journal\":{\"name\":\"Day 4 Thu, September 20, 2012\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, September 20, 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/icetech-2012-140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, September 20, 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/icetech-2012-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ARKTOS vehicle is an amphibious craft system capable of operation in a wide range of Arctic ice conditions and seastates. It is approved as an evacuation system by various regulators, including the US Coast Guard (USCG), and is currently operational in several marine cold regions as an EER and utility system. Following is a description of recent additional operational and ergonomical tests of the 52 Person USCG Approved ARKTOS Evacuation Craft. This description is followed by a summary of some of the ongoing developments for the system in oil spill control, ice management, and its extension to new applications in forestry and pipeline construction in swampy locations. As part of a reliability investigation of the ARKTOS EER capability, a series of non-Arctic calm condition manoeuvrability and performance drills were carried out to focus on both global performance and operator ergonomic factors. These tests were carried out at a temperate location in the Fraser River Delta and Robert’s Bank, near Vancouver, B.C. Operation of the Craft in deep water with jets only, shallow water using both tracks and jets, and on tidal flats above water using tracks only. The planned utilization of the Craft by ENI Petroleum, Inc. in the Beaufort Sea is described. Next, descriptions of some other current new developments for oil spill cleanup, river and sea ice management, and disaster response applications are given. Conclusions and recommendations for further developments and reliability improvements are given.