马尔法蒂问题的多目标优化方法

R. Enkhbat, G. Battur
{"title":"马尔法蒂问题的多目标优化方法","authors":"R. Enkhbat, G. Battur","doi":"10.21638/11701/spbu31.2021.07","DOIUrl":null,"url":null,"abstract":"In this work, we consider the multi-objective optimization problem based on the circle packing problem, particularly, extended Malfatti's problem (Enkhbat, 2020) with k disks. Malfatti's problem was examined for the first time from a view point of global optimization theory and algorithm in (Enkhbat, 2016). Also, a game theory approach has been applied to Malfatti's problem in (Enkhbat and Battur, 2021). In this paper, we apply the the multi-objective optimization approach to the problem. Using the weighted sum method, we reduce this problem to optimization problem with nonconvex constraints. For solving numerically the weighted sum optimization problem, we apply KKT conditions and find Pareto stationary points. Also, we estimate upper bounds of the global value of the objective function by Lagrange duality. Numerical results are provided.","PeriodicalId":235627,"journal":{"name":"Contributions to Game Theory and Management","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective Optimization Approach to Malfatti's Problem\",\"authors\":\"R. Enkhbat, G. Battur\",\"doi\":\"10.21638/11701/spbu31.2021.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the multi-objective optimization problem based on the circle packing problem, particularly, extended Malfatti's problem (Enkhbat, 2020) with k disks. Malfatti's problem was examined for the first time from a view point of global optimization theory and algorithm in (Enkhbat, 2016). Also, a game theory approach has been applied to Malfatti's problem in (Enkhbat and Battur, 2021). In this paper, we apply the the multi-objective optimization approach to the problem. Using the weighted sum method, we reduce this problem to optimization problem with nonconvex constraints. For solving numerically the weighted sum optimization problem, we apply KKT conditions and find Pareto stationary points. Also, we estimate upper bounds of the global value of the objective function by Lagrange duality. Numerical results are provided.\",\"PeriodicalId\":235627,\"journal\":{\"name\":\"Contributions to Game Theory and Management\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Game Theory and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu31.2021.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Game Theory and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu31.2021.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们考虑了基于圆包装问题的多目标优化问题,特别是k个磁盘的扩展Malfatti问题(Enkhbat, 2020)。Malfatti的问题在(Enkhbat, 2016)中首次从全局优化理论和算法的角度进行了研究。此外,博弈论方法已应用于Malfatti的问题(Enkhbat和Battur, 2021)。本文将多目标优化方法应用于该问题。利用加权和方法,将该问题简化为具有非凸约束的优化问题。为了在数值上求解加权和优化问题,我们应用KKT条件求解Pareto平稳点。并利用拉格朗日对偶性估计了目标函数全局值的上界。给出了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective Optimization Approach to Malfatti's Problem
In this work, we consider the multi-objective optimization problem based on the circle packing problem, particularly, extended Malfatti's problem (Enkhbat, 2020) with k disks. Malfatti's problem was examined for the first time from a view point of global optimization theory and algorithm in (Enkhbat, 2016). Also, a game theory approach has been applied to Malfatti's problem in (Enkhbat and Battur, 2021). In this paper, we apply the the multi-objective optimization approach to the problem. Using the weighted sum method, we reduce this problem to optimization problem with nonconvex constraints. For solving numerically the weighted sum optimization problem, we apply KKT conditions and find Pareto stationary points. Also, we estimate upper bounds of the global value of the objective function by Lagrange duality. Numerical results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信