利用双延迟DDPG(TD3)实现人工智能电力系统模型的频率维持

Rohan Dubey, Renuka Loka, A. M. Parimi
{"title":"利用双延迟DDPG(TD3)实现人工智能电力系统模型的频率维持","authors":"Rohan Dubey, Renuka Loka, A. M. Parimi","doi":"10.1109/PARC52418.2022.9726615","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-agent deep reinforcement learning (MA-DRL) method for load frequency control of a renewable energy single-area power system in a continuous action-space domain. This method can non-linearly adapt the control strategies for cooperative LFC control through off-policy learning. Multi-agent twin delayed deep deterministic policy gradient (TD3) is proposed to adjust and refine the control system parameters considering variational load and source behaviour. Implementation of the model requires only local information for each control area to achieve an optimal control state. Comparison between TD3 and DDPG model proves the edge of TD3 model. Simulations and numerical data comparison on a renewable energy single-area power system demonstrate that the proposed model can successfully reduce control errors and stochastic frequency deviations caused by load and renewable power fluctuations.","PeriodicalId":158896,"journal":{"name":"2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maintaining the Frequency of AI-based Power System Model using Twin Delayed DDPG(TD3) Implementation\",\"authors\":\"Rohan Dubey, Renuka Loka, A. M. Parimi\",\"doi\":\"10.1109/PARC52418.2022.9726615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-agent deep reinforcement learning (MA-DRL) method for load frequency control of a renewable energy single-area power system in a continuous action-space domain. This method can non-linearly adapt the control strategies for cooperative LFC control through off-policy learning. Multi-agent twin delayed deep deterministic policy gradient (TD3) is proposed to adjust and refine the control system parameters considering variational load and source behaviour. Implementation of the model requires only local information for each control area to achieve an optimal control state. Comparison between TD3 and DDPG model proves the edge of TD3 model. Simulations and numerical data comparison on a renewable energy single-area power system demonstrate that the proposed model can successfully reduce control errors and stochastic frequency deviations caused by load and renewable power fluctuations.\",\"PeriodicalId\":158896,\"journal\":{\"name\":\"2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PARC52418.2022.9726615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PARC52418.2022.9726615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于多智能体深度强化学习(MA-DRL)的连续动作空间域可再生能源单区电力系统负荷频率控制方法。该方法可以通过离策略学习对LFC控制策略进行非线性自适应。提出了多智能体双延迟深度确定性策略梯度(TD3)来调整和细化控制系统参数,以考虑变化的负载和源行为。模型的实现只需要每个控制区域的局部信息就可以达到最优控制状态。TD3与DDPG模型的比较证明了TD3模型的优越性。在可再生能源单区域电力系统上的仿真和数值数据对比表明,该模型能够有效地降低负荷和可再生能源波动引起的控制误差和随机频率偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maintaining the Frequency of AI-based Power System Model using Twin Delayed DDPG(TD3) Implementation
This paper proposes a multi-agent deep reinforcement learning (MA-DRL) method for load frequency control of a renewable energy single-area power system in a continuous action-space domain. This method can non-linearly adapt the control strategies for cooperative LFC control through off-policy learning. Multi-agent twin delayed deep deterministic policy gradient (TD3) is proposed to adjust and refine the control system parameters considering variational load and source behaviour. Implementation of the model requires only local information for each control area to achieve an optimal control state. Comparison between TD3 and DDPG model proves the edge of TD3 model. Simulations and numerical data comparison on a renewable energy single-area power system demonstrate that the proposed model can successfully reduce control errors and stochastic frequency deviations caused by load and renewable power fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信