协调控制发电和需求改进安全约束管理

J. Gunda, S. Djokic
{"title":"协调控制发电和需求改进安全约束管理","authors":"J. Gunda, S. Djokic","doi":"10.1109/ISGTEurope.2016.7856280","DOIUrl":null,"url":null,"abstract":"Constraint management is one of the critical tasks for ensuring secure operation of power supply systems and is generally formulated and solved as an optimal power flow (OPF) problem with generation scheduling and voltage set point controls. In case of severe contingencies, conventional OPF methods may fail to converge, i.e. find solution satisfying all constraints. In such cases, network operators/planners should identify critical constraints, indicating network buses and lines that require reinforcing, or where further controls should be implemented (e.g. demand side management or load shedding). Repeated constraint relaxation in conventional OPF methods might not be a viable approach to identify critical constraints. This paper presents an alternative method, based on a meta-heuristic algorithm and injection sensitivity factors, to, first, identify critical constraints, and, second, manage constraints through a coordinated generation and demand control actions. Practical aspects of the presented approach are illustrated using IEEE 30-bus network as an example.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Coordinated control of generation and demand for improved management of security constraints\",\"authors\":\"J. Gunda, S. Djokic\",\"doi\":\"10.1109/ISGTEurope.2016.7856280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constraint management is one of the critical tasks for ensuring secure operation of power supply systems and is generally formulated and solved as an optimal power flow (OPF) problem with generation scheduling and voltage set point controls. In case of severe contingencies, conventional OPF methods may fail to converge, i.e. find solution satisfying all constraints. In such cases, network operators/planners should identify critical constraints, indicating network buses and lines that require reinforcing, or where further controls should be implemented (e.g. demand side management or load shedding). Repeated constraint relaxation in conventional OPF methods might not be a viable approach to identify critical constraints. This paper presents an alternative method, based on a meta-heuristic algorithm and injection sensitivity factors, to, first, identify critical constraints, and, second, manage constraints through a coordinated generation and demand control actions. Practical aspects of the presented approach are illustrated using IEEE 30-bus network as an example.\",\"PeriodicalId\":330869,\"journal\":{\"name\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2016.7856280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

约束管理是保证供电系统安全运行的关键任务之一,通常被表述为具有发电计划和电压设定点控制的最优潮流(OPF)问题。在严重偶然性的情况下,传统的OPF方法可能无法收敛,即找到满足所有约束的解。在这种情况下,网络运营商/规划者应确定关键的限制因素,指出需要加强的网络总线和线路,或应实施进一步控制的地方(例如需求侧管理或减载)。常规OPF方法中的重复约束松弛可能不是确定关键约束的可行方法。本文提出了一种基于元启发式算法和注入敏感性因子的替代方法,首先,识别关键约束,其次,通过协调的发电和需求控制行动来管理约束。以IEEE 30总线网络为例说明了所提出方法的实际方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated control of generation and demand for improved management of security constraints
Constraint management is one of the critical tasks for ensuring secure operation of power supply systems and is generally formulated and solved as an optimal power flow (OPF) problem with generation scheduling and voltage set point controls. In case of severe contingencies, conventional OPF methods may fail to converge, i.e. find solution satisfying all constraints. In such cases, network operators/planners should identify critical constraints, indicating network buses and lines that require reinforcing, or where further controls should be implemented (e.g. demand side management or load shedding). Repeated constraint relaxation in conventional OPF methods might not be a viable approach to identify critical constraints. This paper presents an alternative method, based on a meta-heuristic algorithm and injection sensitivity factors, to, first, identify critical constraints, and, second, manage constraints through a coordinated generation and demand control actions. Practical aspects of the presented approach are illustrated using IEEE 30-bus network as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信