Min Chen, L. Rosendahl, I. Bach, T. Condra, J. Pedersen
{"title":"基于SPICE的电热模型研究热电发电机的瞬态行为","authors":"Min Chen, L. Rosendahl, I. Bach, T. Condra, J. Pedersen","doi":"10.1109/ICT.2006.331335","DOIUrl":null,"url":null,"abstract":"A thermoelectric generator (TEG) usually works in dynamic operating conditions due to the time change, in real applications, of the electric load and hot or cold temperatures. Thus understanding transient thermal and electrical behavior of the device, besides the steady-state behavior, is important in order to investigate the global device performance. The major objective of this work is to describe the transient behavior of TEG operating in high temperature environments through a SPICE model based on an electrothermal analogy. The SPICE model presented is derived from a one dimensional (1-D) heat transfer differential equation. An important feature of the model is its ability to calculate the temperature profile taking the real temperature dependence of the materials properties into account. This feature is essential in simulating TEG exposed to a large temperature difference. In combination with considering the finite heat transfer rate at the interface between TEG and thermal ambient, the model is able to reflect the thermo-electric coupled multi-field system effect of TEG. A test rig is developed for verifying the proposed model. Commercially available TEG is tested with respect to stabilizing time under sharply changed electric load. The preliminary results of experiments and modeling are analyzed. It is expected that the model presented can assist, not only in the optimal design of TEG itself, but also in the evaluation of the whole energy system","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Transient Behavior Study of Thermoelectric Generators through an Electro-thermal Model Using SPICE\",\"authors\":\"Min Chen, L. Rosendahl, I. Bach, T. Condra, J. Pedersen\",\"doi\":\"10.1109/ICT.2006.331335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermoelectric generator (TEG) usually works in dynamic operating conditions due to the time change, in real applications, of the electric load and hot or cold temperatures. Thus understanding transient thermal and electrical behavior of the device, besides the steady-state behavior, is important in order to investigate the global device performance. The major objective of this work is to describe the transient behavior of TEG operating in high temperature environments through a SPICE model based on an electrothermal analogy. The SPICE model presented is derived from a one dimensional (1-D) heat transfer differential equation. An important feature of the model is its ability to calculate the temperature profile taking the real temperature dependence of the materials properties into account. This feature is essential in simulating TEG exposed to a large temperature difference. In combination with considering the finite heat transfer rate at the interface between TEG and thermal ambient, the model is able to reflect the thermo-electric coupled multi-field system effect of TEG. A test rig is developed for verifying the proposed model. Commercially available TEG is tested with respect to stabilizing time under sharply changed electric load. The preliminary results of experiments and modeling are analyzed. It is expected that the model presented can assist, not only in the optimal design of TEG itself, but also in the evaluation of the whole energy system\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient Behavior Study of Thermoelectric Generators through an Electro-thermal Model Using SPICE
A thermoelectric generator (TEG) usually works in dynamic operating conditions due to the time change, in real applications, of the electric load and hot or cold temperatures. Thus understanding transient thermal and electrical behavior of the device, besides the steady-state behavior, is important in order to investigate the global device performance. The major objective of this work is to describe the transient behavior of TEG operating in high temperature environments through a SPICE model based on an electrothermal analogy. The SPICE model presented is derived from a one dimensional (1-D) heat transfer differential equation. An important feature of the model is its ability to calculate the temperature profile taking the real temperature dependence of the materials properties into account. This feature is essential in simulating TEG exposed to a large temperature difference. In combination with considering the finite heat transfer rate at the interface between TEG and thermal ambient, the model is able to reflect the thermo-electric coupled multi-field system effect of TEG. A test rig is developed for verifying the proposed model. Commercially available TEG is tested with respect to stabilizing time under sharply changed electric load. The preliminary results of experiments and modeling are analyzed. It is expected that the model presented can assist, not only in the optimal design of TEG itself, but also in the evaluation of the whole energy system