H. D. Tafti, Awais Ahmad, Leonardo Callegaro, G. Konstantinou, J. Fletcher
{"title":"商用屋顶光伏逆变器对电网电压波动的敏感性","authors":"H. D. Tafti, Awais Ahmad, Leonardo Callegaro, G. Konstantinou, J. Fletcher","doi":"10.1109/ECCE-Asia49820.2021.9479029","DOIUrl":null,"url":null,"abstract":"The ever-increasing electricity generation from rooftop photovoltaic (PV) systems, also known as distributed PV (DPV), leads to new challenges for transmission and distribution network service providers. DPV lacks visibility and control from system operators, and this issue becomes critical especially during and after grid contingencies. Technical standards applicable to DPV inverters define expected performance and behavior, however they do not always provide clear guidelines under several grid disturbance conditions. On the one hand, inverters are allowed to respond flexibly. However, knowledge of inverters behavior under grid voltage disturbances is necessary to design and tune the parameters of composite load models, used by power system operators in planning the required power reserve. This article investigates through experiments the sensitivity and behavior of 25 off-the-shelf residential DPV inverters under grid voltage swells. Inverters are found to behave in either of these ways: 1) Ride-through, 2) curtail power, and 3) disconnect. Power curtailment or disconnection under such disturbances can have a detrimental impact on power system security. Accordingly, power system operators should schedule enough power reserves or take other appropriate measures.","PeriodicalId":145366,"journal":{"name":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sensitivity of Commercial Rooftop Photovoltaic Inverters to Grid Voltage Swell\",\"authors\":\"H. D. Tafti, Awais Ahmad, Leonardo Callegaro, G. Konstantinou, J. Fletcher\",\"doi\":\"10.1109/ECCE-Asia49820.2021.9479029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-increasing electricity generation from rooftop photovoltaic (PV) systems, also known as distributed PV (DPV), leads to new challenges for transmission and distribution network service providers. DPV lacks visibility and control from system operators, and this issue becomes critical especially during and after grid contingencies. Technical standards applicable to DPV inverters define expected performance and behavior, however they do not always provide clear guidelines under several grid disturbance conditions. On the one hand, inverters are allowed to respond flexibly. However, knowledge of inverters behavior under grid voltage disturbances is necessary to design and tune the parameters of composite load models, used by power system operators in planning the required power reserve. This article investigates through experiments the sensitivity and behavior of 25 off-the-shelf residential DPV inverters under grid voltage swells. Inverters are found to behave in either of these ways: 1) Ride-through, 2) curtail power, and 3) disconnect. Power curtailment or disconnection under such disturbances can have a detrimental impact on power system security. Accordingly, power system operators should schedule enough power reserves or take other appropriate measures.\",\"PeriodicalId\":145366,\"journal\":{\"name\":\"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-Asia49820.2021.9479029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-Asia49820.2021.9479029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity of Commercial Rooftop Photovoltaic Inverters to Grid Voltage Swell
The ever-increasing electricity generation from rooftop photovoltaic (PV) systems, also known as distributed PV (DPV), leads to new challenges for transmission and distribution network service providers. DPV lacks visibility and control from system operators, and this issue becomes critical especially during and after grid contingencies. Technical standards applicable to DPV inverters define expected performance and behavior, however they do not always provide clear guidelines under several grid disturbance conditions. On the one hand, inverters are allowed to respond flexibly. However, knowledge of inverters behavior under grid voltage disturbances is necessary to design and tune the parameters of composite load models, used by power system operators in planning the required power reserve. This article investigates through experiments the sensitivity and behavior of 25 off-the-shelf residential DPV inverters under grid voltage swells. Inverters are found to behave in either of these ways: 1) Ride-through, 2) curtail power, and 3) disconnect. Power curtailment or disconnection under such disturbances can have a detrimental impact on power system security. Accordingly, power system operators should schedule enough power reserves or take other appropriate measures.