不同合成参数对粒径控制绿色合成纳米银稳定性的影响

R. Kaur, P. Avti, Vivek Kumar, Rajesh Kumar
{"title":"不同合成参数对粒径控制绿色合成纳米银稳定性的影响","authors":"R. Kaur, P. Avti, Vivek Kumar, Rajesh Kumar","doi":"10.1088/2632-959X/abf42a","DOIUrl":null,"url":null,"abstract":"In this study, we have focused on the green method using Litchi Chinensis Leaf Extract (LCLE) for the synthesis of silver nanoparticles (AgNPs). Here, the experimental control parameters (reducing/stabilizing agent quantity, reaction time and temperature, silver ion concentrations) were studied during the size controlled synthesis of silver nanoparticles and their physicochemical properties have been studied. For biological studies, the stability of AgNPs at physiological pH is of vital importance; hence, post-synthesis solution stability of AgNPs was examined at various pH conditions. Stable AgNPs are formed by treating the aqueous solution of AgNO3 with LCLE. Formation of AgNPs was observed visually by the change in the color and further characterized by the surface Plasmon resonance (SPR) peak observed at 436 nm by UV–vis spectroscopy. The synthesized AgNPs were also characterized for their size distribution by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Transmission electron microscope (TEM), crystalline nature by X-Ray Diffraction (XRD) and Fourier Transform infrared (FITR) for the functional groups present. The size of AgNPs was in the range of 40–50 nm, spherical in with face centered cubic (FCC) structure. The biomolecules (epicatechin) present in LCLE were responsible for reduction, capping, and stabilizing agent of AgNPs. Post- synthesis, the stability of AgNPs has been studied by changes in the SPR peaks at various pH (2–11) conditions using UV–vis spectroscopy. This size controlled nanoparticles are very stable at physiological pH and retain their intrinsic SPR property.","PeriodicalId":118165,"journal":{"name":"Nano Express","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles\",\"authors\":\"R. Kaur, P. Avti, Vivek Kumar, Rajesh Kumar\",\"doi\":\"10.1088/2632-959X/abf42a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we have focused on the green method using Litchi Chinensis Leaf Extract (LCLE) for the synthesis of silver nanoparticles (AgNPs). Here, the experimental control parameters (reducing/stabilizing agent quantity, reaction time and temperature, silver ion concentrations) were studied during the size controlled synthesis of silver nanoparticles and their physicochemical properties have been studied. For biological studies, the stability of AgNPs at physiological pH is of vital importance; hence, post-synthesis solution stability of AgNPs was examined at various pH conditions. Stable AgNPs are formed by treating the aqueous solution of AgNO3 with LCLE. Formation of AgNPs was observed visually by the change in the color and further characterized by the surface Plasmon resonance (SPR) peak observed at 436 nm by UV–vis spectroscopy. The synthesized AgNPs were also characterized for their size distribution by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Transmission electron microscope (TEM), crystalline nature by X-Ray Diffraction (XRD) and Fourier Transform infrared (FITR) for the functional groups present. The size of AgNPs was in the range of 40–50 nm, spherical in with face centered cubic (FCC) structure. The biomolecules (epicatechin) present in LCLE were responsible for reduction, capping, and stabilizing agent of AgNPs. Post- synthesis, the stability of AgNPs has been studied by changes in the SPR peaks at various pH (2–11) conditions using UV–vis spectroscopy. This size controlled nanoparticles are very stable at physiological pH and retain their intrinsic SPR property.\",\"PeriodicalId\":118165,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959X/abf42a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959X/abf42a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们重点研究了利用荔枝叶提取物(LCLE)合成纳米银(AgNPs)的绿色方法。本文研究了粒径控制合成纳米银的实验控制参数(还原剂/稳定剂用量、反应时间和温度、银离子浓度),并对其理化性质进行了研究。在生物学研究中,AgNPs在生理pH下的稳定性至关重要;因此,我们考察了AgNPs在不同pH条件下的合成后溶液稳定性。用LCLE处理AgNO3水溶液形成稳定的AgNPs。通过颜色的变化可以直观地观察到AgNPs的形成,并通过紫外-可见光谱在436 nm处观察到表面等离子体共振(SPR)峰来进一步表征。通过动态光散射(DLS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、x射线衍射(XRD)和傅里叶变换红外(FITR)对所合成的AgNPs进行了表征。AgNPs的尺寸在40 ~ 50 nm之间,呈球形,具有面心立方(FCC)结构。LCLE中存在的生物分子(表儿茶素)负责AgNPs的还原,封盖和稳定剂。合成后,利用紫外-可见光谱法研究了AgNPs在不同pH(2-11)条件下SPR峰的变化。这种尺寸可控的纳米颗粒在生理pH下非常稳定,并保持其固有的SPR特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles
In this study, we have focused on the green method using Litchi Chinensis Leaf Extract (LCLE) for the synthesis of silver nanoparticles (AgNPs). Here, the experimental control parameters (reducing/stabilizing agent quantity, reaction time and temperature, silver ion concentrations) were studied during the size controlled synthesis of silver nanoparticles and their physicochemical properties have been studied. For biological studies, the stability of AgNPs at physiological pH is of vital importance; hence, post-synthesis solution stability of AgNPs was examined at various pH conditions. Stable AgNPs are formed by treating the aqueous solution of AgNO3 with LCLE. Formation of AgNPs was observed visually by the change in the color and further characterized by the surface Plasmon resonance (SPR) peak observed at 436 nm by UV–vis spectroscopy. The synthesized AgNPs were also characterized for their size distribution by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Transmission electron microscope (TEM), crystalline nature by X-Ray Diffraction (XRD) and Fourier Transform infrared (FITR) for the functional groups present. The size of AgNPs was in the range of 40–50 nm, spherical in with face centered cubic (FCC) structure. The biomolecules (epicatechin) present in LCLE were responsible for reduction, capping, and stabilizing agent of AgNPs. Post- synthesis, the stability of AgNPs has been studied by changes in the SPR peaks at various pH (2–11) conditions using UV–vis spectroscopy. This size controlled nanoparticles are very stable at physiological pH and retain their intrinsic SPR property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信