PyTorch中的高通量近似乘法模型

Elias Trommer, Bernd Waschneck, Akash Kumar
{"title":"PyTorch中的高通量近似乘法模型","authors":"Elias Trommer, Bernd Waschneck, Akash Kumar","doi":"10.1109/DDECS57882.2023.10139366","DOIUrl":null,"url":null,"abstract":"Approximate multipliers can reduce the resource consumption of neural network accelerators. To study their effects on an application, they need to be simulated during network training. We develop simulation models for a common class of approximate multipliers. Our models speed up execution by replacing time-consuming type conversions and memory accesses with fast floating-point arithmetic. Across six different neural network architectures, these models increase throughput by 2.7× over the commonly used array lookup while recreating behavioral simulation with high fidelity.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"834 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Approximate Multiplication Models in PyTorch\",\"authors\":\"Elias Trommer, Bernd Waschneck, Akash Kumar\",\"doi\":\"10.1109/DDECS57882.2023.10139366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate multipliers can reduce the resource consumption of neural network accelerators. To study their effects on an application, they need to be simulated during network training. We develop simulation models for a common class of approximate multipliers. Our models speed up execution by replacing time-consuming type conversions and memory accesses with fast floating-point arithmetic. Across six different neural network architectures, these models increase throughput by 2.7× over the commonly used array lookup while recreating behavioral simulation with high fidelity.\",\"PeriodicalId\":220690,\"journal\":{\"name\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"834 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS57882.2023.10139366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近似乘法器可以减少神经网络加速器的资源消耗。为了研究它们对应用程序的影响,需要在网络训练期间对它们进行模拟。我们为一类常见的近似乘法器开发了仿真模型。我们的模型通过用快速浮点运算取代耗时的类型转换和内存访问来加快执行速度。在六种不同的神经网络架构中,这些模型比常用的数组查找增加了2.7倍的吞吐量,同时以高保真度重建行为模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Throughput Approximate Multiplication Models in PyTorch
Approximate multipliers can reduce the resource consumption of neural network accelerators. To study their effects on an application, they need to be simulated during network training. We develop simulation models for a common class of approximate multipliers. Our models speed up execution by replacing time-consuming type conversions and memory accesses with fast floating-point arithmetic. Across six different neural network architectures, these models increase throughput by 2.7× over the commonly used array lookup while recreating behavioral simulation with high fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信