二值模式的特征提取

G. Nagy
{"title":"二值模式的特征提取","authors":"G. Nagy","doi":"10.1109/TSSC.1969.300219","DOIUrl":null,"url":null,"abstract":"The objects and methods of automatic feature extraction on binary patterns are briefly reviewed. An intuitive interpretation for geometric features is suggested whereby such a feature is conceived of as a cluster of component vectors in pattern space. A modified version of the Isodata or K-means clustering algorithm is applied to a set of patterns originally proposed by Block, Nilsson, and Duda, and to another artificial alphabet. Results are given in terms of a figure-of-merit which measures the deviation between the original patterns and the patterns reconstructed from the automatically derived feature set.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Feature Extraction on Binary Patterns\",\"authors\":\"G. Nagy\",\"doi\":\"10.1109/TSSC.1969.300219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objects and methods of automatic feature extraction on binary patterns are briefly reviewed. An intuitive interpretation for geometric features is suggested whereby such a feature is conceived of as a cluster of component vectors in pattern space. A modified version of the Isodata or K-means clustering algorithm is applied to a set of patterns originally proposed by Block, Nilsson, and Duda, and to another artificial alphabet. Results are given in terms of a figure-of-merit which measures the deviation between the original patterns and the patterns reconstructed from the automatically derived feature set.\",\"PeriodicalId\":120916,\"journal\":{\"name\":\"IEEE Trans. Syst. Sci. Cybern.\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Syst. Sci. Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSSC.1969.300219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1969.300219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

简要介绍了二值模式自动特征提取的目标和方法。对几何特征提出了一种直观的解释,即这种特征被认为是模式空间中的一组分量向量。Isodata或K-means聚类算法的修改版本应用于最初由Block、Nilsson和Duda提出的一组模式,以及另一个人工字母表。结果给出了一个指标,衡量原始模式和从自动衍生的特征集重建的模式之间的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Extraction on Binary Patterns
The objects and methods of automatic feature extraction on binary patterns are briefly reviewed. An intuitive interpretation for geometric features is suggested whereby such a feature is conceived of as a cluster of component vectors in pattern space. A modified version of the Isodata or K-means clustering algorithm is applied to a set of patterns originally proposed by Block, Nilsson, and Duda, and to another artificial alphabet. Results are given in terms of a figure-of-merit which measures the deviation between the original patterns and the patterns reconstructed from the automatically derived feature set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信