Hyunjoo Lee, K. Park, P. Cristman, O. Oralkan, M. Kupnik, B. Khuri-Yakub
{"title":"基于多膜CMUT的高灵敏度共振化学传感器低噪声振荡器","authors":"Hyunjoo Lee, K. Park, P. Cristman, O. Oralkan, M. Kupnik, B. Khuri-Yakub","doi":"10.1109/MEMSYS.2009.4805494","DOIUrl":null,"url":null,"abstract":"We present 17.5-MHz and 42.7-MHz low-noise Colpitts oscillators employing capacitive micromachined ultrasonic transducers (CMUTs), each composed of a thousand resonator cells electrically connected in parallel. The massive parallelism lowers the motional impedance, and thus, reduces frequency noise and provides better matching to low-noise oscillator topologies. The 42.7-MHz oscillator achieved a phase noise of -105 dBc/Hz and -148 dBc/Hz at offset frequencies of 1 kHz and 1 MHz, respectively in air. The performance is comparable to MEMS oscillators based on resonators with high Q in vacuum. The lowest Allan deviation of the oscillator was measured to be 4.7 × 10-9 implying a mass resolution of 0.96 attogram per membrane. In addition, using the 17.5-MHz CMUT resonator, the performance of the Colpitts topology is compared to that of the amplifier based oscillator topology.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A Low-Noise Oscillator based on a Multi-Membrane CMUT for High Sensitivity Resonant Chemical Sensors\",\"authors\":\"Hyunjoo Lee, K. Park, P. Cristman, O. Oralkan, M. Kupnik, B. Khuri-Yakub\",\"doi\":\"10.1109/MEMSYS.2009.4805494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present 17.5-MHz and 42.7-MHz low-noise Colpitts oscillators employing capacitive micromachined ultrasonic transducers (CMUTs), each composed of a thousand resonator cells electrically connected in parallel. The massive parallelism lowers the motional impedance, and thus, reduces frequency noise and provides better matching to low-noise oscillator topologies. The 42.7-MHz oscillator achieved a phase noise of -105 dBc/Hz and -148 dBc/Hz at offset frequencies of 1 kHz and 1 MHz, respectively in air. The performance is comparable to MEMS oscillators based on resonators with high Q in vacuum. The lowest Allan deviation of the oscillator was measured to be 4.7 × 10-9 implying a mass resolution of 0.96 attogram per membrane. In addition, using the 17.5-MHz CMUT resonator, the performance of the Colpitts topology is compared to that of the amplifier based oscillator topology.\",\"PeriodicalId\":187850,\"journal\":{\"name\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2009.4805494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-Noise Oscillator based on a Multi-Membrane CMUT for High Sensitivity Resonant Chemical Sensors
We present 17.5-MHz and 42.7-MHz low-noise Colpitts oscillators employing capacitive micromachined ultrasonic transducers (CMUTs), each composed of a thousand resonator cells electrically connected in parallel. The massive parallelism lowers the motional impedance, and thus, reduces frequency noise and provides better matching to low-noise oscillator topologies. The 42.7-MHz oscillator achieved a phase noise of -105 dBc/Hz and -148 dBc/Hz at offset frequencies of 1 kHz and 1 MHz, respectively in air. The performance is comparable to MEMS oscillators based on resonators with high Q in vacuum. The lowest Allan deviation of the oscillator was measured to be 4.7 × 10-9 implying a mass resolution of 0.96 attogram per membrane. In addition, using the 17.5-MHz CMUT resonator, the performance of the Colpitts topology is compared to that of the amplifier based oscillator topology.