Jianing Zhao, Hanjiang Hu, Keyi Zhu, Xiao Yu, Hesheng Wang
{"title":"具有方位测量的网络不确定机器人系统的分布式交会控制","authors":"Jianing Zhao, Hanjiang Hu, Keyi Zhu, Xiao Yu, Hesheng Wang","doi":"10.1109/ICRA48506.2021.9561194","DOIUrl":null,"url":null,"abstract":"In this paper, the distributed rendezvous control problem of networked uncertain robotic systems with bearing measurements is investigated. The network topology of the multi-robot systems is described by an undirected graph. The dynamics of robots is modeled by Euler-Lagrange equation with unknown inertial parameters, which is more general than simple kinematics considered in existing works on rendezvous problem of multi-robot systems. To achieve rendezvous, a distributed adaptive force/torque control law is developed for each robot, which uses bearings with respect to its neighbors instead of relative displacements or distances. It is shown that the resulting closed-loop multi-robot systems are globally asymptotically stable. Then, the rendezvous control problem of multiple wheeled mobile robots is further solved by the proposed approach. Finally, on-site experiment on networked TurtleBot3 Burger mobile robots is conducted and the results demonstrate effectiveness of the proposed approach.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Rendezvous Control of Networked Uncertain Robotic Systems with Bearing Measurements\",\"authors\":\"Jianing Zhao, Hanjiang Hu, Keyi Zhu, Xiao Yu, Hesheng Wang\",\"doi\":\"10.1109/ICRA48506.2021.9561194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the distributed rendezvous control problem of networked uncertain robotic systems with bearing measurements is investigated. The network topology of the multi-robot systems is described by an undirected graph. The dynamics of robots is modeled by Euler-Lagrange equation with unknown inertial parameters, which is more general than simple kinematics considered in existing works on rendezvous problem of multi-robot systems. To achieve rendezvous, a distributed adaptive force/torque control law is developed for each robot, which uses bearings with respect to its neighbors instead of relative displacements or distances. It is shown that the resulting closed-loop multi-robot systems are globally asymptotically stable. Then, the rendezvous control problem of multiple wheeled mobile robots is further solved by the proposed approach. Finally, on-site experiment on networked TurtleBot3 Burger mobile robots is conducted and the results demonstrate effectiveness of the proposed approach.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Rendezvous Control of Networked Uncertain Robotic Systems with Bearing Measurements
In this paper, the distributed rendezvous control problem of networked uncertain robotic systems with bearing measurements is investigated. The network topology of the multi-robot systems is described by an undirected graph. The dynamics of robots is modeled by Euler-Lagrange equation with unknown inertial parameters, which is more general than simple kinematics considered in existing works on rendezvous problem of multi-robot systems. To achieve rendezvous, a distributed adaptive force/torque control law is developed for each robot, which uses bearings with respect to its neighbors instead of relative displacements or distances. It is shown that the resulting closed-loop multi-robot systems are globally asymptotically stable. Then, the rendezvous control problem of multiple wheeled mobile robots is further solved by the proposed approach. Finally, on-site experiment on networked TurtleBot3 Burger mobile robots is conducted and the results demonstrate effectiveness of the proposed approach.