{"title":"基于深度学习的光刻热点检测数据增强研究","authors":"V. Borisov, J. Scheible","doi":"10.1117/12.2326563","DOIUrl":null,"url":null,"abstract":"Lithographical hotspot (LH) detection using deep learning (DL) has received much attention in the recent years. It happens mainly due to the facts the DL approach leads to a better accuracy over the traditional, state-of- the-art programming approaches. The purpose of this study is to compare existing data augmentation (DA) techniques for the integrated circuit (IC) mask data using DL methods. DA is a method which refers to the process of creating new samples similar to the training set, thereby helping to reduce the gap between classes as well as improving the performance of the DL system. Experimental results suggest that the DA methods increase overall DL models performance for the hotspot detection tasks.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Research on data augmentation for lithography hotspot detection using deep learning\",\"authors\":\"V. Borisov, J. Scheible\",\"doi\":\"10.1117/12.2326563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithographical hotspot (LH) detection using deep learning (DL) has received much attention in the recent years. It happens mainly due to the facts the DL approach leads to a better accuracy over the traditional, state-of- the-art programming approaches. The purpose of this study is to compare existing data augmentation (DA) techniques for the integrated circuit (IC) mask data using DL methods. DA is a method which refers to the process of creating new samples similar to the training set, thereby helping to reduce the gap between classes as well as improving the performance of the DL system. Experimental results suggest that the DA methods increase overall DL models performance for the hotspot detection tasks.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2326563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2326563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on data augmentation for lithography hotspot detection using deep learning
Lithographical hotspot (LH) detection using deep learning (DL) has received much attention in the recent years. It happens mainly due to the facts the DL approach leads to a better accuracy over the traditional, state-of- the-art programming approaches. The purpose of this study is to compare existing data augmentation (DA) techniques for the integrated circuit (IC) mask data using DL methods. DA is a method which refers to the process of creating new samples similar to the training set, thereby helping to reduce the gap between classes as well as improving the performance of the DL system. Experimental results suggest that the DA methods increase overall DL models performance for the hotspot detection tasks.