用于体内皮质电成像的喷墨印刷银电极阵列

Preston D. Donaldson, Leila Ghanbari, Mathew L. Rynes, S. Kodandaramaiah, S. Swisher
{"title":"用于体内皮质电成像的喷墨印刷银电极阵列","authors":"Preston D. Donaldson, Leila Ghanbari, Mathew L. Rynes, S. Kodandaramaiah, S. Swisher","doi":"10.1109/NER.2019.8717083","DOIUrl":null,"url":null,"abstract":"Electrocorticography (ECoG) is an important neuroscientific tool for acquiring information about brain states and mesoscopic neural activity. Additionally, the use of ECoG and the higher resolution technique micro-ECoG (µECoG) show promise in Brain-Machine Interface (BMI) applications for motor and speech prosthetics. Commercially available µECoG arrays made through photolithographic and vapor-deposition processes allow neuroscientists to incorporate µECoG into their studies, however, these electrode arrays can be expensive and do not lend themselves to easy reconfigurability for experiment-specific electrode layouts. Here we show a process for patterning µECoG electrode arrays using inkjet printing on a 50 µm thick PET substrate. With inkjet printing, we achieve electrode active areas with 300 µm diameters and interconnects with a 500 µm pitch. These electrode arrays demonstrate an average impedance of 2.5 kΩ at 100 Hz and were used to record local field potentials from the mouse somatosensory cortex with signal-to-noise ratios between 30-45 dB. Our results demonstrate the feasibility of using inkjet-patterned µECoG electrode arrays in future neuroscientific studies. Furthermore, we expect printed µECoG arrays to be compatible with roll-to-roll processing for high-throughput and low-cost manufacturing, decreasing the cost-barrier for neuroscientists seeking to incorporate customizable µECoG electrode arrays into their experimental design.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"799 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Inkjet-Printed Silver Electrode Array for in-vivo Electrocorticography\",\"authors\":\"Preston D. Donaldson, Leila Ghanbari, Mathew L. Rynes, S. Kodandaramaiah, S. Swisher\",\"doi\":\"10.1109/NER.2019.8717083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocorticography (ECoG) is an important neuroscientific tool for acquiring information about brain states and mesoscopic neural activity. Additionally, the use of ECoG and the higher resolution technique micro-ECoG (µECoG) show promise in Brain-Machine Interface (BMI) applications for motor and speech prosthetics. Commercially available µECoG arrays made through photolithographic and vapor-deposition processes allow neuroscientists to incorporate µECoG into their studies, however, these electrode arrays can be expensive and do not lend themselves to easy reconfigurability for experiment-specific electrode layouts. Here we show a process for patterning µECoG electrode arrays using inkjet printing on a 50 µm thick PET substrate. With inkjet printing, we achieve electrode active areas with 300 µm diameters and interconnects with a 500 µm pitch. These electrode arrays demonstrate an average impedance of 2.5 kΩ at 100 Hz and were used to record local field potentials from the mouse somatosensory cortex with signal-to-noise ratios between 30-45 dB. Our results demonstrate the feasibility of using inkjet-patterned µECoG electrode arrays in future neuroscientific studies. Furthermore, we expect printed µECoG arrays to be compatible with roll-to-roll processing for high-throughput and low-cost manufacturing, decreasing the cost-barrier for neuroscientists seeking to incorporate customizable µECoG electrode arrays into their experimental design.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"799 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8717083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

脑皮质电图(ECoG)是获取大脑状态和中观神经活动信息的重要神经科学工具。此外,ECoG和高分辨率技术micro-ECoG(µECoG)在脑机接口(BMI)应用于运动和语言假肢方面显示出前景。通过光刻和气相沉积工艺制成的商用微ECoG阵列使神经科学家能够将微ECoG纳入他们的研究中,然而,这些电极阵列可能很昂贵,并且不适合用于实验特定电极布局的可重构性。在这里,我们展示了在50 μ m厚的PET基板上使用喷墨打印对μ ECoG电极阵列进行图图化的过程。通过喷墨打印,我们实现了直径为300微米的电极活动区域和间距为500微米的互连。这些电极阵列在100 Hz下的平均阻抗为2.5 kΩ,用于记录来自小鼠体感觉皮层的局部场电位,信噪比在30-45 dB之间。我们的研究结果证明了在未来的神经科学研究中使用喷墨图案的微ECoG电极阵列的可行性。此外,我们希望打印的微ECoG阵列能够与卷对卷加工兼容,实现高通量和低成本制造,降低神经科学家寻求将可定制的微ECoG电极阵列纳入其实验设计的成本障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inkjet-Printed Silver Electrode Array for in-vivo Electrocorticography
Electrocorticography (ECoG) is an important neuroscientific tool for acquiring information about brain states and mesoscopic neural activity. Additionally, the use of ECoG and the higher resolution technique micro-ECoG (µECoG) show promise in Brain-Machine Interface (BMI) applications for motor and speech prosthetics. Commercially available µECoG arrays made through photolithographic and vapor-deposition processes allow neuroscientists to incorporate µECoG into their studies, however, these electrode arrays can be expensive and do not lend themselves to easy reconfigurability for experiment-specific electrode layouts. Here we show a process for patterning µECoG electrode arrays using inkjet printing on a 50 µm thick PET substrate. With inkjet printing, we achieve electrode active areas with 300 µm diameters and interconnects with a 500 µm pitch. These electrode arrays demonstrate an average impedance of 2.5 kΩ at 100 Hz and were used to record local field potentials from the mouse somatosensory cortex with signal-to-noise ratios between 30-45 dB. Our results demonstrate the feasibility of using inkjet-patterned µECoG electrode arrays in future neuroscientific studies. Furthermore, we expect printed µECoG arrays to be compatible with roll-to-roll processing for high-throughput and low-cost manufacturing, decreasing the cost-barrier for neuroscientists seeking to incorporate customizable µECoG electrode arrays into their experimental design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信