{"title":"电力状态感知缓冲树结构","authors":"I. Jiang, Ming-Hua Wu","doi":"10.1109/ICCD.2008.4751835","DOIUrl":null,"url":null,"abstract":"Interconnect delay and low power are two of the main issues in nano technology. Buffer insertion during routing effectively reduces interconnect delay; power state management and multiple supply voltage significantly lower power consumption. However, buffering without considering power states in multiple supply voltage designs may cause the signal integrity problem. This paper first considers power states into buffered tree construction. Based on a hierarchical approach combined with dynamic programming, we can simultaneously minimize power, satisfy timing constraints and maintain signal integrity.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power-state-aware buffered tree construction\",\"authors\":\"I. Jiang, Ming-Hua Wu\",\"doi\":\"10.1109/ICCD.2008.4751835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interconnect delay and low power are two of the main issues in nano technology. Buffer insertion during routing effectively reduces interconnect delay; power state management and multiple supply voltage significantly lower power consumption. However, buffering without considering power states in multiple supply voltage designs may cause the signal integrity problem. This paper first considers power states into buffered tree construction. Based on a hierarchical approach combined with dynamic programming, we can simultaneously minimize power, satisfy timing constraints and maintain signal integrity.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"288 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interconnect delay and low power are two of the main issues in nano technology. Buffer insertion during routing effectively reduces interconnect delay; power state management and multiple supply voltage significantly lower power consumption. However, buffering without considering power states in multiple supply voltage designs may cause the signal integrity problem. This paper first considers power states into buffered tree construction. Based on a hierarchical approach combined with dynamic programming, we can simultaneously minimize power, satisfy timing constraints and maintain signal integrity.