具有快速傅立叶变换加速的多级插值快速积分求解器

D. Schobert, T. Eibert
{"title":"具有快速傅立叶变换加速的多级插值快速积分求解器","authors":"D. Schobert, T. Eibert","doi":"10.1109/URSI-EMTS.2010.5637194","DOIUrl":null,"url":null,"abstract":"A fast integral solution of the electric field integral equation employing multilevel Lagrange interpolation factorization of the free-space Green's function is presented. The multilevel interpolation representation works on the same oct-tree structure as it is common in the multilevel fast multipole methods. The drawback of the bad computational efficiency of the multilevel interpolation representation due to involved full translation operators is overcome by employing the Fast Fourier Transformation to achieve diagonalization. In a variety of examples, it is shown that this solver achieves excellent computation time and memory efficiencies. Even at very low frequencies it is possible to accelerate a not stabilized electric field integral equation solution which is known to be badly conditioned.","PeriodicalId":404116,"journal":{"name":"2010 URSI International Symposium on Electromagnetic Theory","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A multilevel interpolating fast integral solver with fast fourier transform acceleration\",\"authors\":\"D. Schobert, T. Eibert\",\"doi\":\"10.1109/URSI-EMTS.2010.5637194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast integral solution of the electric field integral equation employing multilevel Lagrange interpolation factorization of the free-space Green's function is presented. The multilevel interpolation representation works on the same oct-tree structure as it is common in the multilevel fast multipole methods. The drawback of the bad computational efficiency of the multilevel interpolation representation due to involved full translation operators is overcome by employing the Fast Fourier Transformation to achieve diagonalization. In a variety of examples, it is shown that this solver achieves excellent computation time and memory efficiencies. Even at very low frequencies it is possible to accelerate a not stabilized electric field integral equation solution which is known to be badly conditioned.\",\"PeriodicalId\":404116,\"journal\":{\"name\":\"2010 URSI International Symposium on Electromagnetic Theory\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 URSI International Symposium on Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URSI-EMTS.2010.5637194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 URSI International Symposium on Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2010.5637194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用自由空间格林函数的多级拉格朗日插值分解,给出了电场积分方程的快速积分解。多级插值表示在相同的oct树结构上工作,因为它是多级快速多极方法中常见的。采用快速傅立叶变换实现对角化,克服了多级插值表示由于涉及全平移算子而导致计算效率低下的缺点。实例表明,该求解器具有较好的计算时间和内存效率。即使在非常低的频率下,也有可能加速一个已知条件恶劣的不稳定电场积分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multilevel interpolating fast integral solver with fast fourier transform acceleration
A fast integral solution of the electric field integral equation employing multilevel Lagrange interpolation factorization of the free-space Green's function is presented. The multilevel interpolation representation works on the same oct-tree structure as it is common in the multilevel fast multipole methods. The drawback of the bad computational efficiency of the multilevel interpolation representation due to involved full translation operators is overcome by employing the Fast Fourier Transformation to achieve diagonalization. In a variety of examples, it is shown that this solver achieves excellent computation time and memory efficiencies. Even at very low frequencies it is possible to accelerate a not stabilized electric field integral equation solution which is known to be badly conditioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信