一个改进的双虚数系统

A. G. Slekys, A. Avizienis
{"title":"一个改进的双虚数系统","authors":"A. G. Slekys, A. Avizienis","doi":"10.1109/ARITH.1978.6155756","DOIUrl":null,"url":null,"abstract":"In this paper the properties of p-imaginary number systems are reviewed and a modified bi-imaginary number system is introduced as a special case with p = 2. Major properties, including conversion of integer and floating point operands represented in a radix +p system, range, sign and zero tests, and shifting are discussed. The ability to represent the operands as vectors of radix −2 digits suggests advantages in implementing machine-usable arithmetic algorithms.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A modified bi-imaginary number system\",\"authors\":\"A. G. Slekys, A. Avizienis\",\"doi\":\"10.1109/ARITH.1978.6155756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the properties of p-imaginary number systems are reviewed and a modified bi-imaginary number system is introduced as a special case with p = 2. Major properties, including conversion of integer and floating point operands represented in a radix +p system, range, sign and zero tests, and shifting are discussed. The ability to represent the operands as vectors of radix −2 digits suggests advantages in implementing machine-usable arithmetic algorithms.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文回顾了p虚数系统的性质,并作为p = 2的特例引入了一个改进的双虚数系统。主要的性质,包括整数和浮点数的转换,表示在基数+p系统,范围,符号和零的测试,以及移位。将操作数表示为基数- 2数字的向量的能力表明了在实现机器可用的算术算法方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified bi-imaginary number system
In this paper the properties of p-imaginary number systems are reviewed and a modified bi-imaginary number system is introduced as a special case with p = 2. Major properties, including conversion of integer and floating point operands represented in a radix +p system, range, sign and zero tests, and shifting are discussed. The ability to represent the operands as vectors of radix −2 digits suggests advantages in implementing machine-usable arithmetic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信