超高比特率全光TDM传输系统的研究进展

M. Saruwatari
{"title":"超高比特率全光TDM传输系统的研究进展","authors":"M. Saruwatari","doi":"10.1109/LEOSST.1994.700506","DOIUrl":null,"url":null,"abstract":"A b s t ra c t -The re('cn I progress t owu i d ltlr ru/(i SI opl'icu 1 ,fihi> r t ru nsni ission systems employing a I 1 opticul lime-domnin n7idtiple.xiti~ (7DM) frclriiiqrre.z is reviewed. 0utlinc.s of (he latest I00Ghitl.s transnzission experiments und lhci ri~lutecl Icc.hno1ogie.r are de.vc,rihed including state-of-the-art performuni'es arulBiture prospects. All-optical time-domain signal processing technologies are now being developed for realizing ultrahigh-bit-rate optical time-division-multiplexing (TDM) transmission systems [ 1-51. The major technologies include high-speed picosecond optical pulse generation [6-81, all-optical multi/demultiplexing (MUX/DEMUX) [9171, linear or soliton pulse transmission, and optical timing extraction techniques [4,18-24]. Here, recent progress on very high-speed optical TDM transmission up to 100Gbit/s is introduced together with the essentiial technologies. Figure 1 depicts the experimental setup of the latest lOO-Gbit/s transmission experiment over 200 km that uses newly developed optical TDM technologies [4]. A wavelength-tunable mode-locked Er fiber laser (ML-EDFL) [8] provides stable 6.3-GHz, :3.5 ps transform-limited (TL) pulses for external modulation (2\"-1, PRBS) by a LiNb03 modulator. A 16:l planar lightwave circuit (PLC) multiplexer stably multiplexes the baseline 6.3 Gbit/s signal into 100 Gbit/s. The TDM IOO-Gbit/s signal is then transmitted through five fibers connected via four in-line Ed-doped fiber amplifiers. The center wavelength of the ML-EDFL is set to the zero dispersion wavelength of the 200 km fiber. At the receiver side, a novel timing extraction phase-locked loop (PLL) [4] using a traveling-wave laser-diode amplifier (TW-LDA), used a$ a phase detector, extracts the prescaled clock of 6.3-GHz from the received 100-Gbit/s signal. Using the four-wave-mixing (FWM) process instead of gainmodulation as adopted in the previous PLL [ 221, very stable polarization-independent (PI) timing extraction is achieved with the lowered jitter of 0 . 3 ~ ~ . The extracted 6.3-GHz clock is used to drive both the all-optical DEMUX and the optical receiver. Finally, the novel PI-FWM demultiplexer (DEMUX) [ 171 using a polarization-maintaining 3 k.m fiber demultiplexes the 100Gbitls signal into the 6.3GbiUs original. With this configuration, a 100 Gbitls optical signal, 16 x 6.3-Gbit/s, has been successfully transmitted through a 200-km fiber without any polarization controllers. 6.3 G bivs 100 Gbit/s","PeriodicalId":379594,"journal":{"name":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Progress Toward Ultrahigh-bit-rate All-optical TDM Transmission Systems\",\"authors\":\"M. Saruwatari\",\"doi\":\"10.1109/LEOSST.1994.700506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A b s t ra c t -The re('cn I progress t owu i d ltlr ru/(i SI opl'icu 1 ,fihi> r t ru nsni ission systems employing a I 1 opticul lime-domnin n7idtiple.xiti~ (7DM) frclriiiqrre.z is reviewed. 0utlinc.s of (he latest I00Ghitl.s transnzission experiments und lhci ri~lutecl Icc.hno1ogie.r are de.vc,rihed including state-of-the-art performuni'es arulBiture prospects. All-optical time-domain signal processing technologies are now being developed for realizing ultrahigh-bit-rate optical time-division-multiplexing (TDM) transmission systems [ 1-51. The major technologies include high-speed picosecond optical pulse generation [6-81, all-optical multi/demultiplexing (MUX/DEMUX) [9171, linear or soliton pulse transmission, and optical timing extraction techniques [4,18-24]. Here, recent progress on very high-speed optical TDM transmission up to 100Gbit/s is introduced together with the essentiial technologies. Figure 1 depicts the experimental setup of the latest lOO-Gbit/s transmission experiment over 200 km that uses newly developed optical TDM technologies [4]. A wavelength-tunable mode-locked Er fiber laser (ML-EDFL) [8] provides stable 6.3-GHz, :3.5 ps transform-limited (TL) pulses for external modulation (2\\\"-1, PRBS) by a LiNb03 modulator. A 16:l planar lightwave circuit (PLC) multiplexer stably multiplexes the baseline 6.3 Gbit/s signal into 100 Gbit/s. The TDM IOO-Gbit/s signal is then transmitted through five fibers connected via four in-line Ed-doped fiber amplifiers. The center wavelength of the ML-EDFL is set to the zero dispersion wavelength of the 200 km fiber. At the receiver side, a novel timing extraction phase-locked loop (PLL) [4] using a traveling-wave laser-diode amplifier (TW-LDA), used a$ a phase detector, extracts the prescaled clock of 6.3-GHz from the received 100-Gbit/s signal. Using the four-wave-mixing (FWM) process instead of gainmodulation as adopted in the previous PLL [ 221, very stable polarization-independent (PI) timing extraction is achieved with the lowered jitter of 0 . 3 ~ ~ . The extracted 6.3-GHz clock is used to drive both the all-optical DEMUX and the optical receiver. Finally, the novel PI-FWM demultiplexer (DEMUX) [ 171 using a polarization-maintaining 3 k.m fiber demultiplexes the 100Gbitls signal into the 6.3GbiUs original. With this configuration, a 100 Gbitls optical signal, 16 x 6.3-Gbit/s, has been successfully transmitted through a 200-km fiber without any polarization controllers. 6.3 G bivs 100 Gbit/s\",\"PeriodicalId\":379594,\"journal\":{\"name\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOSST.1994.700506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.1994.700506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在此基础上,研究人员提出了一种新的方法,即在使用I - 1光时域n7波导的光学发射系统中使用I - 1光时域n7波导。xiti~ (7DM) frcliqrre。复习Z。0 utlinc。这是我最近的一次约会。传输实验和lci技术。我们的公司拥有一流的业绩和良好的发展前景。为了实现超高比特率的光时分复用(TDM)传输系统,目前正在开发全光时域信号处理技术[1-51]。主要技术包括高速皮秒光脉冲产生[6-81]、全光多路/解路复用(MUX/DEMUX)[9171]、线性或孤子脉冲传输和光定时提取技术[4,18-24]。本文介绍了高达100Gbit/s的超高速光时分复用传输的最新进展及其关键技术。图1描述了最新的200公里lo - gbit /s传输实验的实验设置,该实验采用了新开发的光时分复用技术[4]。波长可调谐锁模铒光纤激光器(ML-EDFL)[8]为LiNb03调制器提供稳定的6.3 ghz、3.5 ps限变(TL)脉冲,用于外部调制(2”-1,PRBS)。16:1平面光波电路(PLC)复用器将基准6.3 Gbit/s的信号稳定地复用为100gbit /s的信号。然后,TDM io - gbit /s信号通过5根光纤传输,这些光纤通过4个在线掺ed光纤放大器连接。将ML-EDFL的中心波长设置为200 km光纤的零色散波长。在接收端,一种新型的时序提取锁相环(PLL)[4]使用行波激光二极管放大器(TW-LDA),使用$ a鉴相器,从接收到的100 gbit /s信号中提取6.3 ghz的预刻度时钟。采用四波混频(FWM)过程代替之前的锁相环[221]采用的增益调制,实现了非常稳定的偏振无关(PI)时序提取,抖动降低为0。3 ~ ~。提取的6.3 ghz时钟用于驱动全光DEMUX和光接收器。最后,新型PI-FWM解复用器(DEMUX)[171]使用保持极化的3km光纤将100gbps信号解复用到6.3 gbus原始信号中。通过这种配置,在没有任何偏振控制器的情况下,成功地通过200公里光纤传输了16 × 6.3 gbit /s的100 gbit /s光信号。6.3 G / 100gbit /s
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress Toward Ultrahigh-bit-rate All-optical TDM Transmission Systems
A b s t ra c t -The re('cn I progress t owu i d ltlr ru/(i SI opl'icu 1 ,fihi> r t ru nsni ission systems employing a I 1 opticul lime-domnin n7idtiple.xiti~ (7DM) frclriiiqrre.z is reviewed. 0utlinc.s of (he latest I00Ghitl.s transnzission experiments und lhci ri~lutecl Icc.hno1ogie.r are de.vc,rihed including state-of-the-art performuni'es arulBiture prospects. All-optical time-domain signal processing technologies are now being developed for realizing ultrahigh-bit-rate optical time-division-multiplexing (TDM) transmission systems [ 1-51. The major technologies include high-speed picosecond optical pulse generation [6-81, all-optical multi/demultiplexing (MUX/DEMUX) [9171, linear or soliton pulse transmission, and optical timing extraction techniques [4,18-24]. Here, recent progress on very high-speed optical TDM transmission up to 100Gbit/s is introduced together with the essentiial technologies. Figure 1 depicts the experimental setup of the latest lOO-Gbit/s transmission experiment over 200 km that uses newly developed optical TDM technologies [4]. A wavelength-tunable mode-locked Er fiber laser (ML-EDFL) [8] provides stable 6.3-GHz, :3.5 ps transform-limited (TL) pulses for external modulation (2"-1, PRBS) by a LiNb03 modulator. A 16:l planar lightwave circuit (PLC) multiplexer stably multiplexes the baseline 6.3 Gbit/s signal into 100 Gbit/s. The TDM IOO-Gbit/s signal is then transmitted through five fibers connected via four in-line Ed-doped fiber amplifiers. The center wavelength of the ML-EDFL is set to the zero dispersion wavelength of the 200 km fiber. At the receiver side, a novel timing extraction phase-locked loop (PLL) [4] using a traveling-wave laser-diode amplifier (TW-LDA), used a$ a phase detector, extracts the prescaled clock of 6.3-GHz from the received 100-Gbit/s signal. Using the four-wave-mixing (FWM) process instead of gainmodulation as adopted in the previous PLL [ 221, very stable polarization-independent (PI) timing extraction is achieved with the lowered jitter of 0 . 3 ~ ~ . The extracted 6.3-GHz clock is used to drive both the all-optical DEMUX and the optical receiver. Finally, the novel PI-FWM demultiplexer (DEMUX) [ 171 using a polarization-maintaining 3 k.m fiber demultiplexes the 100Gbitls signal into the 6.3GbiUs original. With this configuration, a 100 Gbitls optical signal, 16 x 6.3-Gbit/s, has been successfully transmitted through a 200-km fiber without any polarization controllers. 6.3 G bivs 100 Gbit/s
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信