顶门控ITO晶体管的首次演示:通道钝化效应

S. Wahid, A. Daus, Jimin Kwon, S. Qin, Jung-Soo Ko, K. Saraswat, H. Wong, E. Pop
{"title":"顶门控ITO晶体管的首次演示:通道钝化效应","authors":"S. Wahid, A. Daus, Jimin Kwon, S. Qin, Jung-Soo Ko, K. Saraswat, H. Wong, E. Pop","doi":"10.1109/drc55272.2022.9855811","DOIUrl":null,"url":null,"abstract":"Ultrathin indium tin oxide (ITO) transistors have shown good performance, with effective mobility $\\mu_{\\text{eff}}\\sim 55\\text{cm}^{2}\\mathrm{V}^{-1}\\mathrm{s}^{-1}$ [1]. Due to their wide band gap (>3 eV), low-temperature large-area deposition, low off- and high on-state current, they are promising candidates for back-end of the line (BEOL) and 3D integration [1], [2]. However, all ITO transistors to date have back-gated (BG) structures, and the effect of top dielectrics or capping layers is unknown. Here, we demonstrate the first top-gated (TG) ITO transistors while successfully passivating the channel during TG dielectric layer deposition. We compare different precursors for atomic layer deposition (ALD) of the passivation layer and their role on device behavior. Ozone-based ALD minimizes the negative shift in threshold voltage $(V_{\\mathrm{T}})$ at short channel lengths and achieves $I_{\\max}\\approx 260\\mu \\mathrm{A}/\\mu \\mathrm{m}$ at VDS =1 V, on/off current ratio of $\\sim 10^{10}$ for $L\\approx 700$ nm channel. Our TG ITO transistors have $\\mu_{\\text{eff}}\\approx 60\\text{cm}^{2}\\mathrm{V}^{-1}\\mathrm{s}^{-1}$.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First Demonstration of Top-Gated ITO Transistors: Effect of Channel Passivation\",\"authors\":\"S. Wahid, A. Daus, Jimin Kwon, S. Qin, Jung-Soo Ko, K. Saraswat, H. Wong, E. Pop\",\"doi\":\"10.1109/drc55272.2022.9855811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin indium tin oxide (ITO) transistors have shown good performance, with effective mobility $\\\\mu_{\\\\text{eff}}\\\\sim 55\\\\text{cm}^{2}\\\\mathrm{V}^{-1}\\\\mathrm{s}^{-1}$ [1]. Due to their wide band gap (>3 eV), low-temperature large-area deposition, low off- and high on-state current, they are promising candidates for back-end of the line (BEOL) and 3D integration [1], [2]. However, all ITO transistors to date have back-gated (BG) structures, and the effect of top dielectrics or capping layers is unknown. Here, we demonstrate the first top-gated (TG) ITO transistors while successfully passivating the channel during TG dielectric layer deposition. We compare different precursors for atomic layer deposition (ALD) of the passivation layer and their role on device behavior. Ozone-based ALD minimizes the negative shift in threshold voltage $(V_{\\\\mathrm{T}})$ at short channel lengths and achieves $I_{\\\\max}\\\\approx 260\\\\mu \\\\mathrm{A}/\\\\mu \\\\mathrm{m}$ at VDS =1 V, on/off current ratio of $\\\\sim 10^{10}$ for $L\\\\approx 700$ nm channel. Our TG ITO transistors have $\\\\mu_{\\\\text{eff}}\\\\approx 60\\\\text{cm}^{2}\\\\mathrm{V}^{-1}\\\\mathrm{s}^{-1}$.\",\"PeriodicalId\":200504,\"journal\":{\"name\":\"2022 Device Research Conference (DRC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/drc55272.2022.9855811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/drc55272.2022.9855811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超薄氧化铟锡(ITO)晶体管表现出良好的性能,具有有效的迁移率$\mu_{\text{eff}}\sim 55\text{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$[1]。由于其宽带隙(> 3ev),低温大面积沉积,低关断和高导通电流,它们是后端线(BEOL)和3D集成的有希望的候选者[1],[2]。然而,迄今为止,所有ITO晶体管都具有背控(BG)结构,并且顶部电介质或封盖层的影响尚不清楚。在这里,我们展示了第一个顶门控(TG) ITO晶体管,同时在TG介电层沉积过程中成功地钝化了通道。我们比较了钝化层原子层沉积(ALD)的不同前驱体及其对器件性能的影响。基于臭氧的ALD在短通道长度下最小化阈值电压$(V_{\mathrm{T}})$的负移,并在VDS =1 V时达到$I_{\max}\approx 260\mu \mathrm{A}/\mu \mathrm{m}$,对于$L\approx 700$ nm通道,开关电流比为$\sim 10^{10}$。我们的TG ITO晶体管有$\mu_{\text{eff}}\approx 60\text{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First Demonstration of Top-Gated ITO Transistors: Effect of Channel Passivation
Ultrathin indium tin oxide (ITO) transistors have shown good performance, with effective mobility $\mu_{\text{eff}}\sim 55\text{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$ [1]. Due to their wide band gap (>3 eV), low-temperature large-area deposition, low off- and high on-state current, they are promising candidates for back-end of the line (BEOL) and 3D integration [1], [2]. However, all ITO transistors to date have back-gated (BG) structures, and the effect of top dielectrics or capping layers is unknown. Here, we demonstrate the first top-gated (TG) ITO transistors while successfully passivating the channel during TG dielectric layer deposition. We compare different precursors for atomic layer deposition (ALD) of the passivation layer and their role on device behavior. Ozone-based ALD minimizes the negative shift in threshold voltage $(V_{\mathrm{T}})$ at short channel lengths and achieves $I_{\max}\approx 260\mu \mathrm{A}/\mu \mathrm{m}$ at VDS =1 V, on/off current ratio of $\sim 10^{10}$ for $L\approx 700$ nm channel. Our TG ITO transistors have $\mu_{\text{eff}}\approx 60\text{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信