B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman
{"title":"耦合系统预测的多模型移动水平估计方法","authors":"B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman","doi":"10.1109/MAES.2013.6495647","DOIUrl":null,"url":null,"abstract":"The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.","PeriodicalId":110721,"journal":{"name":"2011 IEEE AUTOTESTCON","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multiple model moving horizon estimation approach to prognostics in coupled systems\",\"authors\":\"B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman\",\"doi\":\"10.1109/MAES.2013.6495647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.\",\"PeriodicalId\":110721,\"journal\":{\"name\":\"2011 IEEE AUTOTESTCON\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAES.2013.6495647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAES.2013.6495647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple model moving horizon estimation approach to prognostics in coupled systems
The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.