耦合系统预测的多模型移动水平估计方法

B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman
{"title":"耦合系统预测的多模型移动水平估计方法","authors":"B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman","doi":"10.1109/MAES.2013.6495647","DOIUrl":null,"url":null,"abstract":"The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.","PeriodicalId":110721,"journal":{"name":"2011 IEEE AUTOTESTCON","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multiple model moving horizon estimation approach to prognostics in coupled systems\",\"authors\":\"B. Pattipati, C. Sankavaram, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman\",\"doi\":\"10.1109/MAES.2013.6495647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.\",\"PeriodicalId\":110721,\"journal\":{\"name\":\"2011 IEEE AUTOTESTCON\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAES.2013.6495647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAES.2013.6495647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文的主要目标是分析和实现一种新的基于约束非线性优化技术的运动水平模型预测估计方案,用于推断耦合系统中部件的生存函数和剩余使用寿命。该方法采用数据驱动的预测框架,结合故障时间数据、静态和动态(时间序列)参数数据,以及多模型移动地平线估计(MM-MHE)算法,根据组件的使用情况预测组件的存活函数。基于电子节气门控制(ETC)系统的数据,对该方法进行了验证。所提出的预测方法是模块化的,有可能适用于从汽车到航空航天的各种系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple model moving horizon estimation approach to prognostics in coupled systems
The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信