{"title":"基于70纳米GaAs-mHEMT技术的FDD系统d波段收发器","authors":"M. Ito, T. Okawa, T. Marumoto","doi":"10.1109/BCICTS45179.2019.8972754","DOIUrl":null,"url":null,"abstract":"This paper presents a D-band transceiver utilizing a 70-nm GaAs metamorphic high electron mobility transistor (mHEMT) technology for a frequency division duplex (FDD) system. The transceiver includes a duplexer, transmitter and receiver modules, an LO and IF circuit board, and a real-time modem. Each module comprises a silica-based package on which D-band converter and E-band multiplier monolithic microwave integrated circuits (MMICs) are mounted using a flip-chip bonding technique. Real-time communication tests are performed at 142- and 157-GHz duplex frequencies. A 10-Gbps transmission with a high spectral efficiency are achieved using a 128 quadrature amplitude modulation (QAM) signal.","PeriodicalId":243314,"journal":{"name":"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"D-band Transceiver Utilizing 70-nm GaAs-mHEMT Technology for FDD System\",\"authors\":\"M. Ito, T. Okawa, T. Marumoto\",\"doi\":\"10.1109/BCICTS45179.2019.8972754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a D-band transceiver utilizing a 70-nm GaAs metamorphic high electron mobility transistor (mHEMT) technology for a frequency division duplex (FDD) system. The transceiver includes a duplexer, transmitter and receiver modules, an LO and IF circuit board, and a real-time modem. Each module comprises a silica-based package on which D-band converter and E-band multiplier monolithic microwave integrated circuits (MMICs) are mounted using a flip-chip bonding technique. Real-time communication tests are performed at 142- and 157-GHz duplex frequencies. A 10-Gbps transmission with a high spectral efficiency are achieved using a 128 quadrature amplitude modulation (QAM) signal.\",\"PeriodicalId\":243314,\"journal\":{\"name\":\"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCICTS45179.2019.8972754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS45179.2019.8972754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D-band Transceiver Utilizing 70-nm GaAs-mHEMT Technology for FDD System
This paper presents a D-band transceiver utilizing a 70-nm GaAs metamorphic high electron mobility transistor (mHEMT) technology for a frequency division duplex (FDD) system. The transceiver includes a duplexer, transmitter and receiver modules, an LO and IF circuit board, and a real-time modem. Each module comprises a silica-based package on which D-band converter and E-band multiplier monolithic microwave integrated circuits (MMICs) are mounted using a flip-chip bonding technique. Real-time communication tests are performed at 142- and 157-GHz duplex frequencies. A 10-Gbps transmission with a high spectral efficiency are achieved using a 128 quadrature amplitude modulation (QAM) signal.