SRM驱动发射角的多目标灰狼优化

Vinícius Augusto De Abreu Batista, M. V. de Paula, Paulo Robson Melo Costa, Bruna Aderbal De Oliveira, T. A. dos Santos Barros
{"title":"SRM驱动发射角的多目标灰狼优化","authors":"Vinícius Augusto De Abreu Batista, M. V. de Paula, Paulo Robson Melo Costa, Bruna Aderbal De Oliveira, T. A. dos Santos Barros","doi":"10.1109/ITEC55900.2023.10186975","DOIUrl":null,"url":null,"abstract":"The performance of Switched Reluctance Motor (SRM) drives is highly connected to the driving angles. In this paper, an algorithm $\\text{is}$ proposed to ensure optimal SRM performance. A multi-objective grey wolf optimization is implemented to determine the Pareto frontier that includes a trade-off between efficiency and torque ripple. Sensitivity analyses are performed after the completion of the optimization step to understand the influence of driving angles on the performance of the SRM. The results show that the proposed optimization algorithm is efficient in locating the optimal control parameters in the entire operating speed range, returning an R2 of 98% in comparison to the benchmark.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiobjective Grey Wolf Optimization of Firing Angles for SRM Drives\",\"authors\":\"Vinícius Augusto De Abreu Batista, M. V. de Paula, Paulo Robson Melo Costa, Bruna Aderbal De Oliveira, T. A. dos Santos Barros\",\"doi\":\"10.1109/ITEC55900.2023.10186975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of Switched Reluctance Motor (SRM) drives is highly connected to the driving angles. In this paper, an algorithm $\\\\text{is}$ proposed to ensure optimal SRM performance. A multi-objective grey wolf optimization is implemented to determine the Pareto frontier that includes a trade-off between efficiency and torque ripple. Sensitivity analyses are performed after the completion of the optimization step to understand the influence of driving angles on the performance of the SRM. The results show that the proposed optimization algorithm is efficient in locating the optimal control parameters in the entire operating speed range, returning an R2 of 98% in comparison to the benchmark.\",\"PeriodicalId\":234784,\"journal\":{\"name\":\"2023 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC55900.2023.10186975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10186975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开关磁阻电机(SRM)驱动器的性能与驱动角度密切相关。本文提出了一种算法$\text{is}$来保证最佳的SRM性能。采用多目标灰狼优化方法确定了在效率和转矩脉动之间权衡的Pareto边界。在优化步骤完成后进行灵敏度分析,以了解驱动角度对SRM性能的影响。结果表明,所提出的优化算法在整个运行速度范围内能够有效地定位最优控制参数,与基准相比,返回的R2为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective Grey Wolf Optimization of Firing Angles for SRM Drives
The performance of Switched Reluctance Motor (SRM) drives is highly connected to the driving angles. In this paper, an algorithm $\text{is}$ proposed to ensure optimal SRM performance. A multi-objective grey wolf optimization is implemented to determine the Pareto frontier that includes a trade-off between efficiency and torque ripple. Sensitivity analyses are performed after the completion of the optimization step to understand the influence of driving angles on the performance of the SRM. The results show that the proposed optimization algorithm is efficient in locating the optimal control parameters in the entire operating speed range, returning an R2 of 98% in comparison to the benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信