纳米计量系统非线性建模的自适应RLS算法

S. Olyaee, Mohammad Shams Esfand Abadi, S. Hamedi, Fatemeh Finizadeh
{"title":"纳米计量系统非线性建模的自适应RLS算法","authors":"S. Olyaee, Mohammad Shams Esfand Abadi, S. Hamedi, Fatemeh Finizadeh","doi":"10.1109/IRANIANCEE.2010.5507032","DOIUrl":null,"url":null,"abstract":"The periodic nonlinearity in the nanometrology systems based on the laser heterodyne interferometers mainly arises from imperfect laser source and misalignment of their optical setup. The accuracy of the nanometric displacement measurements can be effectively limited by the periodic nonlinearity. In this paper, we model the periodic nonlinearity in a modified laser heterodyne interferometer by adaptive recursive least square (RLS) algorithm. It is shown that this approach can obtain optimal modeling parameters of the nonlinearity. The results show that the RLS algorithm has faster conversions speed and lower steady state mean square error (MSE) in the nonlinearity modeling, comparing the neural network approach.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive RLS algorithm for nonlinearity modeling in the nanometrology system\",\"authors\":\"S. Olyaee, Mohammad Shams Esfand Abadi, S. Hamedi, Fatemeh Finizadeh\",\"doi\":\"10.1109/IRANIANCEE.2010.5507032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The periodic nonlinearity in the nanometrology systems based on the laser heterodyne interferometers mainly arises from imperfect laser source and misalignment of their optical setup. The accuracy of the nanometric displacement measurements can be effectively limited by the periodic nonlinearity. In this paper, we model the periodic nonlinearity in a modified laser heterodyne interferometer by adaptive recursive least square (RLS) algorithm. It is shown that this approach can obtain optimal modeling parameters of the nonlinearity. The results show that the RLS algorithm has faster conversions speed and lower steady state mean square error (MSE) in the nonlinearity modeling, comparing the neural network approach.\",\"PeriodicalId\":282587,\"journal\":{\"name\":\"2010 18th Iranian Conference on Electrical Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th Iranian Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2010.5507032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5507032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于激光外差干涉仪的纳米测量系统的周期性非线性主要是由于激光源不完善和光学装置不对准引起的。周期非线性会有效地限制纳米位移测量的精度。本文采用自适应递推最小二乘(RLS)算法对一种改进型激光外差干涉仪的周期非线性进行建模。结果表明,该方法可以获得非线性的最优建模参数。结果表明,与神经网络方法相比,RLS算法在非线性建模中具有更快的转换速度和更低的稳态均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive RLS algorithm for nonlinearity modeling in the nanometrology system
The periodic nonlinearity in the nanometrology systems based on the laser heterodyne interferometers mainly arises from imperfect laser source and misalignment of their optical setup. The accuracy of the nanometric displacement measurements can be effectively limited by the periodic nonlinearity. In this paper, we model the periodic nonlinearity in a modified laser heterodyne interferometer by adaptive recursive least square (RLS) algorithm. It is shown that this approach can obtain optimal modeling parameters of the nonlinearity. The results show that the RLS algorithm has faster conversions speed and lower steady state mean square error (MSE) in the nonlinearity modeling, comparing the neural network approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信