14nm近阈值MCML电路的性能特性

Alexander E. Shapiro, E. Friedman
{"title":"14nm近阈值MCML电路的性能特性","authors":"Alexander E. Shapiro, E. Friedman","doi":"10.1109/S3S.2013.6716545","DOIUrl":null,"url":null,"abstract":"Near threshold circuits (NTC) are an attractive and promising technology that provides significant power savings with some delay penalty. The feasibility of NTC technology with MOS Current Mode Logic (MCML) based on a 14 nm FinFET process node is examined in this paper. A 32 bit Kogge Stone adder is chosen as a demonstration vehicle for simulation and feasibility analysis. MCML yields enhanced power efficiency when operated with a 100% activity factor above 1 GHz as compared to CMOS. Standard CMOS does not achieve frequencies above 9 GHz without a dramatic increase in power consumption. MCML is most efficient beyond 9 GHz over a wide range of activity factors. MCML also exhibits significantly lower noise levels as compared to standard CMOS. The results of the analysis demonstrate that pairing NTC and MCML is efficient when operating at high frequencies and activity factors.","PeriodicalId":219932,"journal":{"name":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance characteristics of 14 nm near threshold MCML circuits\",\"authors\":\"Alexander E. Shapiro, E. Friedman\",\"doi\":\"10.1109/S3S.2013.6716545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near threshold circuits (NTC) are an attractive and promising technology that provides significant power savings with some delay penalty. The feasibility of NTC technology with MOS Current Mode Logic (MCML) based on a 14 nm FinFET process node is examined in this paper. A 32 bit Kogge Stone adder is chosen as a demonstration vehicle for simulation and feasibility analysis. MCML yields enhanced power efficiency when operated with a 100% activity factor above 1 GHz as compared to CMOS. Standard CMOS does not achieve frequencies above 9 GHz without a dramatic increase in power consumption. MCML is most efficient beyond 9 GHz over a wide range of activity factors. MCML also exhibits significantly lower noise levels as compared to standard CMOS. The results of the analysis demonstrate that pairing NTC and MCML is efficient when operating at high frequencies and activity factors.\",\"PeriodicalId\":219932,\"journal\":{\"name\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2013.6716545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2013.6716545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近阈值电路(NTC)是一种有吸引力和有前途的技术,它提供了显著的功耗节约和一些延迟损失。本文研究了基于14nm FinFET工艺节点的MOS电流模式逻辑(MCML) NTC技术的可行性。选择32位Kogge Stone加法器作为演示载体进行仿真和可行性分析。与CMOS相比,MCML在1 GHz以上的100%活动因数下工作时,功率效率更高。标准CMOS无法在不大幅增加功耗的情况下实现9 GHz以上的频率。在广泛的活动因子范围内,MCML在9 GHz以上是最有效的。与标准CMOS相比,MCML还表现出明显较低的噪声水平。分析结果表明,在高频率和高活度因素下,NTC和MCML配对是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance characteristics of 14 nm near threshold MCML circuits
Near threshold circuits (NTC) are an attractive and promising technology that provides significant power savings with some delay penalty. The feasibility of NTC technology with MOS Current Mode Logic (MCML) based on a 14 nm FinFET process node is examined in this paper. A 32 bit Kogge Stone adder is chosen as a demonstration vehicle for simulation and feasibility analysis. MCML yields enhanced power efficiency when operated with a 100% activity factor above 1 GHz as compared to CMOS. Standard CMOS does not achieve frequencies above 9 GHz without a dramatic increase in power consumption. MCML is most efficient beyond 9 GHz over a wide range of activity factors. MCML also exhibits significantly lower noise levels as compared to standard CMOS. The results of the analysis demonstrate that pairing NTC and MCML is efficient when operating at high frequencies and activity factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信