具有全局加速和部分q旋转跳变的双三角形QR分解

Rui Fang, Siyang Jiang, Hsi-Wen Chen, Wei Ding, Ming-Syan Chen
{"title":"具有全局加速和部分q旋转跳变的双三角形QR分解","authors":"Rui Fang, Siyang Jiang, Hsi-Wen Chen, Wei Ding, Ming-Syan Chen","doi":"10.1109/ICFPT56656.2022.9974402","DOIUrl":null,"url":null,"abstract":"Efficient matrix operations have been deemed keys to efficient data analysis. Dual-Triangular QR Decomposition (DT-QRD) is a critical component in Tall and skinny QR decomposition (TS-QRD), which is a widely-used matrix operation with various applications, such as data compression and feature extraction. In order to accelerate DT-QRD, in this paper, we propose a new acceleration framework, including Global Acceleration Schemes, and Partially $\\boldsymbol{Q}$ -rotation Skipping, which utilize the special DT structure in both $\\mathbf{Q}$ and $\\mathbf{R}$ matrix to reduce the latency and computation resource. Further, we employ the Systolic-Array Based Architecture (1D & 2D) for implementation to reduce the memory usage. Experimental results manifest that our framework achieves $169.70\\times\\ (\\mathbf{1}\\mathbf{D})$ and $250.13\\times\\ (\\mathbf{2}\\mathbf{D})$ speedup.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Triangular QR Decomposition with Global Acceleration and Partially Q-Rotation Skipping\",\"authors\":\"Rui Fang, Siyang Jiang, Hsi-Wen Chen, Wei Ding, Ming-Syan Chen\",\"doi\":\"10.1109/ICFPT56656.2022.9974402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient matrix operations have been deemed keys to efficient data analysis. Dual-Triangular QR Decomposition (DT-QRD) is a critical component in Tall and skinny QR decomposition (TS-QRD), which is a widely-used matrix operation with various applications, such as data compression and feature extraction. In order to accelerate DT-QRD, in this paper, we propose a new acceleration framework, including Global Acceleration Schemes, and Partially $\\\\boldsymbol{Q}$ -rotation Skipping, which utilize the special DT structure in both $\\\\mathbf{Q}$ and $\\\\mathbf{R}$ matrix to reduce the latency and computation resource. Further, we employ the Systolic-Array Based Architecture (1D & 2D) for implementation to reduce the memory usage. Experimental results manifest that our framework achieves $169.70\\\\times\\\\ (\\\\mathbf{1}\\\\mathbf{D})$ and $250.13\\\\times\\\\ (\\\\mathbf{2}\\\\mathbf{D})$ speedup.\",\"PeriodicalId\":239314,\"journal\":{\"name\":\"2022 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT56656.2022.9974402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效的矩阵运算被认为是高效数据分析的关键。双三角QR分解(DT-QRD)是高瘦QR分解(TS-QRD)中的关键组成部分,高瘦QR分解是一种应用广泛的矩阵运算,在数据压缩和特征提取等方面有着广泛的应用。为了加速DT- qrd,本文提出了一种新的加速框架,包括全局加速方案和部分$\boldsymbol{Q}$ -rotation跳过方案,该框架利用$\mathbf{Q}$和$\mathbf{R}$矩阵中的特殊DT结构来减少延迟和计算资源。此外,我们采用基于收缩阵列的架构(1D和2D)来实现以减少内存使用。实验结果表明,我们的框架实现了$169.70\次\ (\mathbf{1}\mathbf{D})$和$250.13\次\ (\mathbf{2}\mathbf{D})$的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Triangular QR Decomposition with Global Acceleration and Partially Q-Rotation Skipping
Efficient matrix operations have been deemed keys to efficient data analysis. Dual-Triangular QR Decomposition (DT-QRD) is a critical component in Tall and skinny QR decomposition (TS-QRD), which is a widely-used matrix operation with various applications, such as data compression and feature extraction. In order to accelerate DT-QRD, in this paper, we propose a new acceleration framework, including Global Acceleration Schemes, and Partially $\boldsymbol{Q}$ -rotation Skipping, which utilize the special DT structure in both $\mathbf{Q}$ and $\mathbf{R}$ matrix to reduce the latency and computation resource. Further, we employ the Systolic-Array Based Architecture (1D & 2D) for implementation to reduce the memory usage. Experimental results manifest that our framework achieves $169.70\times\ (\mathbf{1}\mathbf{D})$ and $250.13\times\ (\mathbf{2}\mathbf{D})$ speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信