Ni-V涂层在氢释放过程中的催化性能

N. Rudenko, S. Leshchenko, Y. Kovalenko
{"title":"Ni-V涂层在氢释放过程中的催化性能","authors":"N. Rudenko, S. Leshchenko, Y. Kovalenko","doi":"10.20998/2078-5364.2021.1.05","DOIUrl":null,"url":null,"abstract":"Solar and hydrogen energy play an important role in providing a variety of industrial facilities with electricity and heat. One of the priorities of modern industry is to increase the production of environmentally friendly energy source – electrochemical synthesis of hydrogen. Modern methods of electrolysis of water do not meet the need for its use, due to the high cost of electrosynthesis of water-alkaline electrolysis, which depends on the material and energy consumption of electrolysis. \nThe useful energy consumption for the production of energy – hydrogen at the cathode and \"unnecessary\" costs - for the release of oxygen at the anode, depend on the overvoltage of the respective reactions. Therefore, the most important problem of hydrogen energy is the synthesis of electrode materials with low overvoltage of O2 and H2. Electrode materials with low overvoltage will reduce the specific consumption of electricity in obtaining hydrogen by \"classical\" electrolysis. \nThe prospects of reducing the cathodic and anodic overvoltage, which is a significant part of the voltage at the terminals of the cell, for the development of highly efficient and competitive technologies for hydrogen production by low-temperature electrolysis of an alkaline solution have been theoretically substantiated and experimentally confirmed. To reduce the overvoltage of the cathodic hydrogen evolution, it is proposed to modify the surface of the cathodes. The application of a small amount of electrolytic alloys of metals of the iron family with molybdenum and tungsten on nickel, cobalt, titanium and steel electrodes significantly (by 40–50 %) reduces the overvoltage of cathodic release of hydrogen from alkali solution. \nThe use of steel electrodes, the surface of which is modified with vanadium and ni-ckel, reduces the voltage drop on the cell during the synthesis of H2 and O2 by 0.2–0.3 V, which creates conditions for reducing energy costs and energy savings.","PeriodicalId":334981,"journal":{"name":"Integrated Technologies and Energy Saving","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CATALYTIC PROPERTIES OF Ni-V COATING IN THE PROCESS OF HYDROGEN RELEASE\",\"authors\":\"N. Rudenko, S. Leshchenko, Y. Kovalenko\",\"doi\":\"10.20998/2078-5364.2021.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar and hydrogen energy play an important role in providing a variety of industrial facilities with electricity and heat. One of the priorities of modern industry is to increase the production of environmentally friendly energy source – electrochemical synthesis of hydrogen. Modern methods of electrolysis of water do not meet the need for its use, due to the high cost of electrosynthesis of water-alkaline electrolysis, which depends on the material and energy consumption of electrolysis. \\nThe useful energy consumption for the production of energy – hydrogen at the cathode and \\\"unnecessary\\\" costs - for the release of oxygen at the anode, depend on the overvoltage of the respective reactions. Therefore, the most important problem of hydrogen energy is the synthesis of electrode materials with low overvoltage of O2 and H2. Electrode materials with low overvoltage will reduce the specific consumption of electricity in obtaining hydrogen by \\\"classical\\\" electrolysis. \\nThe prospects of reducing the cathodic and anodic overvoltage, which is a significant part of the voltage at the terminals of the cell, for the development of highly efficient and competitive technologies for hydrogen production by low-temperature electrolysis of an alkaline solution have been theoretically substantiated and experimentally confirmed. To reduce the overvoltage of the cathodic hydrogen evolution, it is proposed to modify the surface of the cathodes. The application of a small amount of electrolytic alloys of metals of the iron family with molybdenum and tungsten on nickel, cobalt, titanium and steel electrodes significantly (by 40–50 %) reduces the overvoltage of cathodic release of hydrogen from alkali solution. \\nThe use of steel electrodes, the surface of which is modified with vanadium and ni-ckel, reduces the voltage drop on the cell during the synthesis of H2 and O2 by 0.2–0.3 V, which creates conditions for reducing energy costs and energy savings.\",\"PeriodicalId\":334981,\"journal\":{\"name\":\"Integrated Technologies and Energy Saving\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Technologies and Energy Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-5364.2021.1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Technologies and Energy Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-5364.2021.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能和氢能在为各种工业设施提供电力和热能方面发挥着重要作用。提高环境友好型能源——电化学合成氢的产量是现代工业发展的重点之一。现代电解水的方法不能满足其使用的需要,这是由于电解水的电合成成本高,这取决于电解的材料和能量消耗。生产能量的有用能量消耗——阴极的氢和阳极释放氧气的“不必要”成本——取决于各自反应的过电压。因此,氢能源最重要的问题是合成具有低O2和H2过电压的电极材料。具有低过电压的电极材料将减少通过“经典”电解获得氢的比电消耗。降低阴极和阳极过电压是电池末端电压的重要组成部分,对于开发高效和有竞争力的碱性溶液低温电解制氢技术的前景已经得到理论证实和实验证实。为了降低阴极析氢的过电压,提出了对阴极表面进行修饰的方法。在镍、钴、钛和钢电极上应用少量含钼、钨的铁族金属电解合金,可显著降低碱溶液中阴极释放氢的过电压(降低40 - 50%)。采用表面经钒和镍镍改性的钢电极,使电池在合成H2和O2过程中的电压降降低0.2-0.3 V,为降低能源成本和节能创造了条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CATALYTIC PROPERTIES OF Ni-V COATING IN THE PROCESS OF HYDROGEN RELEASE
Solar and hydrogen energy play an important role in providing a variety of industrial facilities with electricity and heat. One of the priorities of modern industry is to increase the production of environmentally friendly energy source – electrochemical synthesis of hydrogen. Modern methods of electrolysis of water do not meet the need for its use, due to the high cost of electrosynthesis of water-alkaline electrolysis, which depends on the material and energy consumption of electrolysis. The useful energy consumption for the production of energy – hydrogen at the cathode and "unnecessary" costs - for the release of oxygen at the anode, depend on the overvoltage of the respective reactions. Therefore, the most important problem of hydrogen energy is the synthesis of electrode materials with low overvoltage of O2 and H2. Electrode materials with low overvoltage will reduce the specific consumption of electricity in obtaining hydrogen by "classical" electrolysis. The prospects of reducing the cathodic and anodic overvoltage, which is a significant part of the voltage at the terminals of the cell, for the development of highly efficient and competitive technologies for hydrogen production by low-temperature electrolysis of an alkaline solution have been theoretically substantiated and experimentally confirmed. To reduce the overvoltage of the cathodic hydrogen evolution, it is proposed to modify the surface of the cathodes. The application of a small amount of electrolytic alloys of metals of the iron family with molybdenum and tungsten on nickel, cobalt, titanium and steel electrodes significantly (by 40–50 %) reduces the overvoltage of cathodic release of hydrogen from alkali solution. The use of steel electrodes, the surface of which is modified with vanadium and ni-ckel, reduces the voltage drop on the cell during the synthesis of H2 and O2 by 0.2–0.3 V, which creates conditions for reducing energy costs and energy savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信