RTP过程中硅的自发发射及其对低温热分析的影响

J.P. Li, A. Hunter, Rajesh Ramanujam
{"title":"RTP过程中硅的自发发射及其对低温热分析的影响","authors":"J.P. Li, A. Hunter, Rajesh Ramanujam","doi":"10.1109/RTP.2008.4690564","DOIUrl":null,"url":null,"abstract":"Si fluorescence or spontaneous emission was discovered during the development of lower-temperature pyrometer. To reveal unambiguously the Si spontaneous emission, a high-power 980nm laser is used together with a high sensitivity IR spectrometer. Clear Si fluorescence spectra with peaks at ∼1140nm were obtained at different Si temperatures. The Si fluorescence peaks shift to longer wavelength, in agreement with Si bandgap narrowing with increasing temperatures. Wafers of different doping levels and types were studied for Si spontaneous emission. It is found that lightly doped (resisitivity ≪20 ohms-cm) Si has the highest level of Si spontaneous emission. On the other hand, heavily doped Si does not generate any Si spontaneous emission, mainly due to the higher recombination. Since the Si spontaneous emission has a broad spectrum, it spills into the RTP pyrometer spectral bandwidth and acts as s spurious pyrometer signal. Even though Si has very low efficiency for light emission due to its indirect bandgap, the fluorescence emitted light is still on the level of pyrometer signal equivalent to ∼200 to 250C.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Si spontaneous emission during RTP and its impact on low-temperature pyrometry\",\"authors\":\"J.P. Li, A. Hunter, Rajesh Ramanujam\",\"doi\":\"10.1109/RTP.2008.4690564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Si fluorescence or spontaneous emission was discovered during the development of lower-temperature pyrometer. To reveal unambiguously the Si spontaneous emission, a high-power 980nm laser is used together with a high sensitivity IR spectrometer. Clear Si fluorescence spectra with peaks at ∼1140nm were obtained at different Si temperatures. The Si fluorescence peaks shift to longer wavelength, in agreement with Si bandgap narrowing with increasing temperatures. Wafers of different doping levels and types were studied for Si spontaneous emission. It is found that lightly doped (resisitivity ≪20 ohms-cm) Si has the highest level of Si spontaneous emission. On the other hand, heavily doped Si does not generate any Si spontaneous emission, mainly due to the higher recombination. Since the Si spontaneous emission has a broad spectrum, it spills into the RTP pyrometer spectral bandwidth and acts as s spurious pyrometer signal. Even though Si has very low efficiency for light emission due to its indirect bandgap, the fluorescence emitted light is still on the level of pyrometer signal equivalent to ∼200 to 250C.\",\"PeriodicalId\":317927,\"journal\":{\"name\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2008.4690564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2008.4690564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低温高温计的研制过程中发现了硅荧光或自发发射。为了明确地揭示硅的自发发射,使用了高功率980nm激光器和高灵敏度红外光谱仪。在不同的硅温度下获得了清晰的Si荧光光谱,峰位于~ 1140nm。硅荧光峰向更长的波长移动,这与硅带隙随温度升高而缩小的趋势一致。研究了不同掺杂水平和掺杂类型的硅片的硅自发发射特性。研究发现,轻掺杂(电阻率≪20欧姆-厘米)的硅具有最高的硅自发辐射水平。另一方面,重掺杂的Si不产生任何Si自发发射,主要是由于较高的复合。由于Si自发辐射具有较宽的光谱,因此它会溢出到RTP高温计的光谱带宽中,并充当假高温计信号。尽管由于Si的间接带隙,其发光效率非常低,但其发出的荧光仍处于相当于~ 200 ~ 250C高温计信号的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Si spontaneous emission during RTP and its impact on low-temperature pyrometry
Si fluorescence or spontaneous emission was discovered during the development of lower-temperature pyrometer. To reveal unambiguously the Si spontaneous emission, a high-power 980nm laser is used together with a high sensitivity IR spectrometer. Clear Si fluorescence spectra with peaks at ∼1140nm were obtained at different Si temperatures. The Si fluorescence peaks shift to longer wavelength, in agreement with Si bandgap narrowing with increasing temperatures. Wafers of different doping levels and types were studied for Si spontaneous emission. It is found that lightly doped (resisitivity ≪20 ohms-cm) Si has the highest level of Si spontaneous emission. On the other hand, heavily doped Si does not generate any Si spontaneous emission, mainly due to the higher recombination. Since the Si spontaneous emission has a broad spectrum, it spills into the RTP pyrometer spectral bandwidth and acts as s spurious pyrometer signal. Even though Si has very low efficiency for light emission due to its indirect bandgap, the fluorescence emitted light is still on the level of pyrometer signal equivalent to ∼200 to 250C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信