用于无网关传输的代码序列

N. Phinainitisart, W. W. Wu
{"title":"用于无网关传输的代码序列","authors":"N. Phinainitisart, W. W. Wu","doi":"10.1109/GLOCOM.1989.64243","DOIUrl":null,"url":null,"abstract":"A systematic procedure for constructing code sequences by utilizing combinatorial difference sets is proposed. The parameters K, V, and lambda of the difference sets will determine the sequence length, the total number of symbols, and the maximum number of overlapping symbols between any two different sequences. The total number of usable sequences (S) is V(V-1) lambda /K(K-1). Special cases are discussed. Construction procedures and examples are given.<<ETX>>","PeriodicalId":256305,"journal":{"name":"IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Code sequences for gatewayless transmission\",\"authors\":\"N. Phinainitisart, W. W. Wu\",\"doi\":\"10.1109/GLOCOM.1989.64243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic procedure for constructing code sequences by utilizing combinatorial difference sets is proposed. The parameters K, V, and lambda of the difference sets will determine the sequence length, the total number of symbols, and the maximum number of overlapping symbols between any two different sequences. The total number of usable sequences (S) is V(V-1) lambda /K(K-1). Special cases are discussed. Construction procedures and examples are given.<<ETX>>\",\"PeriodicalId\":256305,\"journal\":{\"name\":\"IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.1989.64243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.1989.64243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用组合差分集构造码序列的系统方法。差集的参数K、V和lambda将决定任意两个不同序列之间的序列长度、符号总数和重叠符号的最大数量。可用序列的总数(S)为V(V-1) lambda /K(K-1)。讨论了特殊情况。给出了施工步骤和实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code sequences for gatewayless transmission
A systematic procedure for constructing code sequences by utilizing combinatorial difference sets is proposed. The parameters K, V, and lambda of the difference sets will determine the sequence length, the total number of symbols, and the maximum number of overlapping symbols between any two different sequences. The total number of usable sequences (S) is V(V-1) lambda /K(K-1). Special cases are discussed. Construction procedures and examples are given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信