利用主成分检测多变量分布中的异常值

Aldwin M. Teves
{"title":"利用主成分检测多变量分布中的异常值","authors":"Aldwin M. Teves","doi":"10.29121/ijoest.v7.i2.2023.488","DOIUrl":null,"url":null,"abstract":"It is crucial to make inference out of the data at hand. It makes sense to discard spurious observations prior to application of statistical analysis. This study advances a procedure of determining outliers based from the principal components of the original variables. These variables are sorted and given weights based on the magnitude of their inner product with the principal components formulated from the centered and scaled variables. The weights are the corresponding variances explained by the principal components. The measure of proximity among observations is proportionate to the variance (eigenvalues) associated with the principal components. The methodology defines two distinct subintervals where the suspected outliers settle in one of these subintervals based on the proximity measures δo. On the merit of simulated data, the procedure detected 100 percent when the outliers are coming from distinct distribution. On the other hand, the procedure detected 98.7 per cent when the distribution of outliers have equal variance-covariance matrix with the outlier-free distribution and a slight difference in the vector of means.","PeriodicalId":331301,"journal":{"name":"International Journal of Engineering Science Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETECTING OUTLIER IN THE MULTIVARIATE DISTRIBUTION USING PRINCIPAL COMPONENTS\",\"authors\":\"Aldwin M. Teves\",\"doi\":\"10.29121/ijoest.v7.i2.2023.488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is crucial to make inference out of the data at hand. It makes sense to discard spurious observations prior to application of statistical analysis. This study advances a procedure of determining outliers based from the principal components of the original variables. These variables are sorted and given weights based on the magnitude of their inner product with the principal components formulated from the centered and scaled variables. The weights are the corresponding variances explained by the principal components. The measure of proximity among observations is proportionate to the variance (eigenvalues) associated with the principal components. The methodology defines two distinct subintervals where the suspected outliers settle in one of these subintervals based on the proximity measures δo. On the merit of simulated data, the procedure detected 100 percent when the outliers are coming from distinct distribution. On the other hand, the procedure detected 98.7 per cent when the distribution of outliers have equal variance-covariance matrix with the outlier-free distribution and a slight difference in the vector of means.\",\"PeriodicalId\":331301,\"journal\":{\"name\":\"International Journal of Engineering Science Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29121/ijoest.v7.i2.2023.488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijoest.v7.i2.2023.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从手头的资料中作出推断是至关重要的。在应用统计分析之前抛弃虚假的观察结果是有意义的。本研究提出了一种根据原始变量的主成分确定异常值的方法。对这些变量进行排序,并根据其内积的大小给出权重,其中主成分由中心变量和缩放变量组成。权重是由主成分解释的相应方差。观测值之间的接近度与与主成分相关的方差(特征值)成正比。该方法定义了两个不同的子区间,其中可疑异常值根据接近度量δo在其中一个子区间内定居。根据模拟数据的优点,当异常值来自不同的分布时,该程序检测到100%。另一方面,当离群值的分布与无离群值分布具有相等的方差-协方差矩阵并且在均值向量上略有差异时,该程序检测到98.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETECTING OUTLIER IN THE MULTIVARIATE DISTRIBUTION USING PRINCIPAL COMPONENTS
It is crucial to make inference out of the data at hand. It makes sense to discard spurious observations prior to application of statistical analysis. This study advances a procedure of determining outliers based from the principal components of the original variables. These variables are sorted and given weights based on the magnitude of their inner product with the principal components formulated from the centered and scaled variables. The weights are the corresponding variances explained by the principal components. The measure of proximity among observations is proportionate to the variance (eigenvalues) associated with the principal components. The methodology defines two distinct subintervals where the suspected outliers settle in one of these subintervals based on the proximity measures δo. On the merit of simulated data, the procedure detected 100 percent when the outliers are coming from distinct distribution. On the other hand, the procedure detected 98.7 per cent when the distribution of outliers have equal variance-covariance matrix with the outlier-free distribution and a slight difference in the vector of means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信