大功率变换器中多芯片功率模块的电热建模

M. Shahjalal, Hua Lu, C. Bailey
{"title":"大功率变换器中多芯片功率模块的电热建模","authors":"M. Shahjalal, Hua Lu, C. Bailey","doi":"10.1109/ICEPT.2017.8046599","DOIUrl":null,"url":null,"abstract":"In a compact power electronics systems such as converters, thermal interaction between components is inevitable. Traditional RC lumped modelling method does not take that into account and this would cause inaccuracy in the predicted temperature in the components of the systems. In this work, numerical simulation have been used to obtain detailed temperature distribution in power devices and the parameters for a Foster network behavior thermal model are extracted so that the thermal interaction can be accounted for and the model can be used to predict temperatures at all critical layers of the components. An ad-hoc conventional three-phase voltage source inverter (DC to AC converter) with a rating of 7.8 KW has been studied in this work as an example of the application of the proposed framework. The key component in the converter is a 75A/1200V rated IGBT module. A power electronics circuit simulator is used to predict the power losses in the IGBT module and a Finite Element Analysis software is used to obtain the transient temperature profile in the module and the behaviour thermal model parameters are extracted using curve-fit approach. The resulting combined electro-thermal model is analysed using the circuit simulator again to obtain the temperature for various loading conditions. The results show that the proposed method can significantly improve the accuracy of predicted temperatures in the IGBT modules.","PeriodicalId":386197,"journal":{"name":"2017 18th International Conference on Electronic Packaging Technology (ICEPT)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Electro-thermal modelling of multichip power modules for high power converter application\",\"authors\":\"M. Shahjalal, Hua Lu, C. Bailey\",\"doi\":\"10.1109/ICEPT.2017.8046599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a compact power electronics systems such as converters, thermal interaction between components is inevitable. Traditional RC lumped modelling method does not take that into account and this would cause inaccuracy in the predicted temperature in the components of the systems. In this work, numerical simulation have been used to obtain detailed temperature distribution in power devices and the parameters for a Foster network behavior thermal model are extracted so that the thermal interaction can be accounted for and the model can be used to predict temperatures at all critical layers of the components. An ad-hoc conventional three-phase voltage source inverter (DC to AC converter) with a rating of 7.8 KW has been studied in this work as an example of the application of the proposed framework. The key component in the converter is a 75A/1200V rated IGBT module. A power electronics circuit simulator is used to predict the power losses in the IGBT module and a Finite Element Analysis software is used to obtain the transient temperature profile in the module and the behaviour thermal model parameters are extracted using curve-fit approach. The resulting combined electro-thermal model is analysed using the circuit simulator again to obtain the temperature for various loading conditions. The results show that the proposed method can significantly improve the accuracy of predicted temperatures in the IGBT modules.\",\"PeriodicalId\":386197,\"journal\":{\"name\":\"2017 18th International Conference on Electronic Packaging Technology (ICEPT)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Electronic Packaging Technology (ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2017.8046599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Electronic Packaging Technology (ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2017.8046599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在变换器等小型电力电子系统中,元件之间的热相互作用是不可避免的。传统的RC集总建模方法没有考虑到这一点,这将导致系统组件的预测温度不准确。在这项工作中,数值模拟已被用于获得功率器件中的详细温度分布,并提取了福斯特网络行为热模型的参数,以便可以解释热相互作用,并且该模型可用于预测组件所有关键层的温度。本文研究了一个额定功率为7.8 KW的传统三相电压源逆变器(DC - AC转换器),作为该框架应用的一个例子。变频器的关键部件是75A/1200V的IGBT模块。利用电力电子电路模拟器预测IGBT模块的功率损耗,利用有限元分析软件获得模块的瞬态温度分布,并利用曲线拟合方法提取模块的行为热模型参数。利用电路模拟器对得到的复合电热模型进行了分析,得到了不同负载条件下的温度。结果表明,该方法能显著提高IGBT模块的温度预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-thermal modelling of multichip power modules for high power converter application
In a compact power electronics systems such as converters, thermal interaction between components is inevitable. Traditional RC lumped modelling method does not take that into account and this would cause inaccuracy in the predicted temperature in the components of the systems. In this work, numerical simulation have been used to obtain detailed temperature distribution in power devices and the parameters for a Foster network behavior thermal model are extracted so that the thermal interaction can be accounted for and the model can be used to predict temperatures at all critical layers of the components. An ad-hoc conventional three-phase voltage source inverter (DC to AC converter) with a rating of 7.8 KW has been studied in this work as an example of the application of the proposed framework. The key component in the converter is a 75A/1200V rated IGBT module. A power electronics circuit simulator is used to predict the power losses in the IGBT module and a Finite Element Analysis software is used to obtain the transient temperature profile in the module and the behaviour thermal model parameters are extracted using curve-fit approach. The resulting combined electro-thermal model is analysed using the circuit simulator again to obtain the temperature for various loading conditions. The results show that the proposed method can significantly improve the accuracy of predicted temperatures in the IGBT modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信