Sergio Masa, M. Mena, E. Hontañón, J. Lozano, Siamak Eqtesadi, A. Narros
{"title":"化学气体传感器用石墨烯层的电喷涂印刷","authors":"Sergio Masa, M. Mena, E. Hontañón, J. Lozano, Siamak Eqtesadi, A. Narros","doi":"10.3390/ecsa-7-08203","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the electrospray technique for the preparation of graphene layers for use in chemiresistive gas sensors. A dispersion of reduced graphene oxide (rGO) in isopropyl alcohol (0.1 mg/mL) is electrosprayed and the rGO flakes are deposited onto a polymeric substrate with printed interdigitated electrodes. The surface area of the substrate covered with rGO is mainly determined by the distance between the needle and the substrate, while the rGO deposition pattern strongly depends on the flowrate and the applied voltage. Homogeneous layers of rGO are obtained in a stable cone-jet regime, and the room temperature detection behavior of the sensors towards NO2, O3 and CO is assessed. The sensors were not capable of detecting CO (up to 5 ppm), but they detected 0.2 ppm NO2 and 0.05 ppm O3. The results are encouraging regarding the use of electrospray for the production of low-cost and low-power gas sensors based on graphene for air quality applications.","PeriodicalId":270652,"journal":{"name":"Proceedings of 7th International Electronic Conference on Sensors and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrospray printing of graphene layers for chemiresistive gas sensors\",\"authors\":\"Sergio Masa, M. Mena, E. Hontañón, J. Lozano, Siamak Eqtesadi, A. Narros\",\"doi\":\"10.3390/ecsa-7-08203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the electrospray technique for the preparation of graphene layers for use in chemiresistive gas sensors. A dispersion of reduced graphene oxide (rGO) in isopropyl alcohol (0.1 mg/mL) is electrosprayed and the rGO flakes are deposited onto a polymeric substrate with printed interdigitated electrodes. The surface area of the substrate covered with rGO is mainly determined by the distance between the needle and the substrate, while the rGO deposition pattern strongly depends on the flowrate and the applied voltage. Homogeneous layers of rGO are obtained in a stable cone-jet regime, and the room temperature detection behavior of the sensors towards NO2, O3 and CO is assessed. The sensors were not capable of detecting CO (up to 5 ppm), but they detected 0.2 ppm NO2 and 0.05 ppm O3. The results are encouraging regarding the use of electrospray for the production of low-cost and low-power gas sensors based on graphene for air quality applications.\",\"PeriodicalId\":270652,\"journal\":{\"name\":\"Proceedings of 7th International Electronic Conference on Sensors and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 7th International Electronic Conference on Sensors and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecsa-7-08203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 7th International Electronic Conference on Sensors and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecsa-7-08203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrospray printing of graphene layers for chemiresistive gas sensors
In this work, we investigate the electrospray technique for the preparation of graphene layers for use in chemiresistive gas sensors. A dispersion of reduced graphene oxide (rGO) in isopropyl alcohol (0.1 mg/mL) is electrosprayed and the rGO flakes are deposited onto a polymeric substrate with printed interdigitated electrodes. The surface area of the substrate covered with rGO is mainly determined by the distance between the needle and the substrate, while the rGO deposition pattern strongly depends on the flowrate and the applied voltage. Homogeneous layers of rGO are obtained in a stable cone-jet regime, and the room temperature detection behavior of the sensors towards NO2, O3 and CO is assessed. The sensors were not capable of detecting CO (up to 5 ppm), but they detected 0.2 ppm NO2 and 0.05 ppm O3. The results are encouraging regarding the use of electrospray for the production of low-cost and low-power gas sensors based on graphene for air quality applications.