A. Yoshida, T. Miki, M. Shimada, Yuri Yoneda, J. Shirakashi
{"title":"基于物理自旋动力学相互作用稀疏度调度的有效基态搜索","authors":"A. Yoshida, T. Miki, M. Shimada, Yuri Yoneda, J. Shirakashi","doi":"10.1109/3M-NANO56083.2022.9941601","DOIUrl":null,"url":null,"abstract":"Ising spin computing has received gaining attention as an efficient computing technology for solving combinatorial optimization problems. We have introduced extraction-type majority voting logic (E-MVL) that purposely disconnects the interactions between spins and controls the sparsity to find the ground state. In this study, we examine how to control the sparsity, which is a key factor in performance. As a result, the residual energy of E-MVL is reduced by 33.2% compared with that of highly optimized simulated annealing (SA) at solving the Sherrington-Kirkpatrick model with 400 spins. Further, we show that E-MVL exhibits acceleration by increasing the sparsity. These results indicate that E-MVL provides faster and more accurate optimizations than SA by setting an appropriate sparsity.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Ground-state Searches by Scheduling Sparsity of Interactions of Physical Spin Dynamics for Ising Spin Computing\",\"authors\":\"A. Yoshida, T. Miki, M. Shimada, Yuri Yoneda, J. Shirakashi\",\"doi\":\"10.1109/3M-NANO56083.2022.9941601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ising spin computing has received gaining attention as an efficient computing technology for solving combinatorial optimization problems. We have introduced extraction-type majority voting logic (E-MVL) that purposely disconnects the interactions between spins and controls the sparsity to find the ground state. In this study, we examine how to control the sparsity, which is a key factor in performance. As a result, the residual energy of E-MVL is reduced by 33.2% compared with that of highly optimized simulated annealing (SA) at solving the Sherrington-Kirkpatrick model with 400 spins. Further, we show that E-MVL exhibits acceleration by increasing the sparsity. These results indicate that E-MVL provides faster and more accurate optimizations than SA by setting an appropriate sparsity.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Ground-state Searches by Scheduling Sparsity of Interactions of Physical Spin Dynamics for Ising Spin Computing
Ising spin computing has received gaining attention as an efficient computing technology for solving combinatorial optimization problems. We have introduced extraction-type majority voting logic (E-MVL) that purposely disconnects the interactions between spins and controls the sparsity to find the ground state. In this study, we examine how to control the sparsity, which is a key factor in performance. As a result, the residual energy of E-MVL is reduced by 33.2% compared with that of highly optimized simulated annealing (SA) at solving the Sherrington-Kirkpatrick model with 400 spins. Further, we show that E-MVL exhibits acceleration by increasing the sparsity. These results indicate that E-MVL provides faster and more accurate optimizations than SA by setting an appropriate sparsity.