基于超参数优化的数据挖掘算法的实验评价

Rayrone Zirtany Nunes Marques, L. Coutinho, T. B. Borchartt, S. Vale, Francisco Silva
{"title":"基于超参数优化的数据挖掘算法的实验评价","authors":"Rayrone Zirtany Nunes Marques, L. Coutinho, T. B. Borchartt, S. Vale, Francisco Silva","doi":"10.1109/MICAI.2015.29","DOIUrl":null,"url":null,"abstract":"The challenge to choose the best algorithm and its best parameters for a given problem is known as Combined Algorithm Selection and Hyperparameter Optimization Problem. Among all the classification algorithms available are those based on human comprehensible representations, such as decision trees and classification rule induction. These algorithms are usually chosen by the clarity of the results obtained and the interpretability of its models. In this paper, we evaluated the six most used algorithms based on human comprehension. We conducted experiments with 28 datasets often used in the literature in different ways: using default parameters, using ExpDB parameters and using a tool based in genetic algorithm to find the best parameter combination. The results obtained have shown the strategy of combining the data from ExpDB via GA is effective in finding classification models with good accuracy.","PeriodicalId":448255,"journal":{"name":"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Experimental Evaluation of Data Mining Algorithms Using Hyperparameter Optimization\",\"authors\":\"Rayrone Zirtany Nunes Marques, L. Coutinho, T. B. Borchartt, S. Vale, Francisco Silva\",\"doi\":\"10.1109/MICAI.2015.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge to choose the best algorithm and its best parameters for a given problem is known as Combined Algorithm Selection and Hyperparameter Optimization Problem. Among all the classification algorithms available are those based on human comprehensible representations, such as decision trees and classification rule induction. These algorithms are usually chosen by the clarity of the results obtained and the interpretability of its models. In this paper, we evaluated the six most used algorithms based on human comprehension. We conducted experiments with 28 datasets often used in the literature in different ways: using default parameters, using ExpDB parameters and using a tool based in genetic algorithm to find the best parameter combination. The results obtained have shown the strategy of combining the data from ExpDB via GA is effective in finding classification models with good accuracy.\",\"PeriodicalId\":448255,\"journal\":{\"name\":\"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2015.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为给定问题选择最佳算法及其最佳参数的挑战被称为组合算法选择和超参数优化问题。在所有可用的分类算法中,基于人类可理解表示的分类算法,如决策树和分类规则归纳法。这些算法通常是根据所得结果的清晰性和模型的可解释性来选择的。在本文中,我们评估了六种最常用的基于人类理解的算法。我们对文献中常用的28个数据集进行了实验,采用默认参数、ExpDB参数和基于遗传算法的工具寻找最佳参数组合。结果表明,通过遗传算法结合ExpDB数据的分类模型查找策略是有效的,并且具有良好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Evaluation of Data Mining Algorithms Using Hyperparameter Optimization
The challenge to choose the best algorithm and its best parameters for a given problem is known as Combined Algorithm Selection and Hyperparameter Optimization Problem. Among all the classification algorithms available are those based on human comprehensible representations, such as decision trees and classification rule induction. These algorithms are usually chosen by the clarity of the results obtained and the interpretability of its models. In this paper, we evaluated the six most used algorithms based on human comprehension. We conducted experiments with 28 datasets often used in the literature in different ways: using default parameters, using ExpDB parameters and using a tool based in genetic algorithm to find the best parameter combination. The results obtained have shown the strategy of combining the data from ExpDB via GA is effective in finding classification models with good accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信