{"title":"基于线性链CRF的交叉口识别","authors":"Siddharth Tourani, Falak Chhaya, K. Krishna","doi":"10.1109/ICVES.2014.7063732","DOIUrl":null,"url":null,"abstract":"For autonomous navigation in urban environments, the ability to detect road intersections in advance is crucial, especially in the absence of auxiliary geographic information. In this paper we investigate a 3D Point Cloud based solution for intersection recognition and road segment classification. We set up the intersection recognition problem as one of decoding a linear-chain Conditional Random Field (CRF). This allows us to encode temporal consistency relations between adjacent scans in our process, leading to a less error prone recognition algorithm. We quantify this claim experimentally. We first build a grid map of the point cloud, segmenting the region surrounding the robot into navigable and non-navigable regions. Then, based on our proposed beam model, we extract a descriptor of the scene. This we do as each scan is received from the robot. Based on the descriptor we build a linear chain-CRF. By decoding the CRF-chain we are able to recognize the type of road segment taken into consideration. With the proposed method, we are able to recognize Xjunctions, T-shaped intersections and standard non-branching road segments. We compare the CRF-based approach with a standard SVM based one and show performance gain due to the CRF formulation.","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear-chain CRF based intersection recognition\",\"authors\":\"Siddharth Tourani, Falak Chhaya, K. Krishna\",\"doi\":\"10.1109/ICVES.2014.7063732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For autonomous navigation in urban environments, the ability to detect road intersections in advance is crucial, especially in the absence of auxiliary geographic information. In this paper we investigate a 3D Point Cloud based solution for intersection recognition and road segment classification. We set up the intersection recognition problem as one of decoding a linear-chain Conditional Random Field (CRF). This allows us to encode temporal consistency relations between adjacent scans in our process, leading to a less error prone recognition algorithm. We quantify this claim experimentally. We first build a grid map of the point cloud, segmenting the region surrounding the robot into navigable and non-navigable regions. Then, based on our proposed beam model, we extract a descriptor of the scene. This we do as each scan is received from the robot. Based on the descriptor we build a linear chain-CRF. By decoding the CRF-chain we are able to recognize the type of road segment taken into consideration. With the proposed method, we are able to recognize Xjunctions, T-shaped intersections and standard non-branching road segments. We compare the CRF-based approach with a standard SVM based one and show performance gain due to the CRF formulation.\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For autonomous navigation in urban environments, the ability to detect road intersections in advance is crucial, especially in the absence of auxiliary geographic information. In this paper we investigate a 3D Point Cloud based solution for intersection recognition and road segment classification. We set up the intersection recognition problem as one of decoding a linear-chain Conditional Random Field (CRF). This allows us to encode temporal consistency relations between adjacent scans in our process, leading to a less error prone recognition algorithm. We quantify this claim experimentally. We first build a grid map of the point cloud, segmenting the region surrounding the robot into navigable and non-navigable regions. Then, based on our proposed beam model, we extract a descriptor of the scene. This we do as each scan is received from the robot. Based on the descriptor we build a linear chain-CRF. By decoding the CRF-chain we are able to recognize the type of road segment taken into consideration. With the proposed method, we are able to recognize Xjunctions, T-shaped intersections and standard non-branching road segments. We compare the CRF-based approach with a standard SVM based one and show performance gain due to the CRF formulation.