时变系统的不变性原理

E. J. Hancock, A. Papachristodoulou
{"title":"时变系统的不变性原理","authors":"E. J. Hancock, A. Papachristodoulou","doi":"10.1109/CDC.2012.6426537","DOIUrl":null,"url":null,"abstract":"In this paper we propose an invariance principle for time-varying dynamical systems. We first present a novel proof of the Krasovskii-Lasalle invariance principle for forward time using invariance properties of regions of attraction, rather than the invariance property of the limit set. We then propose an invariance principle for bounded time-varying systems, in the spirit of the classical result, by using the Lasalle-Yoshizawa theorem and a uniformity condition. The simple, practical use of the theorem is shown using an example of a pendulum with time-varying parameters.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An invariance principle for time-varying systems\",\"authors\":\"E. J. Hancock, A. Papachristodoulou\",\"doi\":\"10.1109/CDC.2012.6426537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an invariance principle for time-varying dynamical systems. We first present a novel proof of the Krasovskii-Lasalle invariance principle for forward time using invariance properties of regions of attraction, rather than the invariance property of the limit set. We then propose an invariance principle for bounded time-varying systems, in the spirit of the classical result, by using the Lasalle-Yoshizawa theorem and a uniformity condition. The simple, practical use of the theorem is shown using an example of a pendulum with time-varying parameters.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了时变动力系统的不变性原理。本文首先利用吸引域的不变性,而不是极限集的不变性,给出了Krasovskii-Lasalle前时不变性原理的一个新的证明。在经典结果的基础上,利用Lasalle-Yoshizawa定理和均匀性条件,提出了有界时变系统的不变性原理。用一个具有时变参数的摆的例子说明了该定理的简单、实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An invariance principle for time-varying systems
In this paper we propose an invariance principle for time-varying dynamical systems. We first present a novel proof of the Krasovskii-Lasalle invariance principle for forward time using invariance properties of regions of attraction, rather than the invariance property of the limit set. We then propose an invariance principle for bounded time-varying systems, in the spirit of the classical result, by using the Lasalle-Yoshizawa theorem and a uniformity condition. The simple, practical use of the theorem is shown using an example of a pendulum with time-varying parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信