{"title":"用于多负荷直流电网的通用有源稳定器","authors":"P. Magne, B. Nahid-Mobarakeh, S. Pierfederici","doi":"10.1109/IAS.2011.6074339","DOIUrl":null,"url":null,"abstract":"In the More Electrical Aircraft (MEA) project, the many electric actuators situated in several part of the plane will impose to implement some complex DC-power network to ensure the energy transfer. In the MEA context, the design of the DC-networks should respect some constraints as size and weight which correspond to both practical and economical reasons. Heeding of these, optimization of the different passive elements like DC-bus capacitance and filtering inductance is a main issue. Unfortunately, it is known that the reduction of DC-bus capacitance may lead to instability of a HVDC network. In order to consider the instability risk in an application case, this paper will propose a centralized method to stabilize a multi-loads DC-network. The proposed method used the Lyapunov Theory to generate a global command law for a whole electric DC-network. A stabilizing feedback is designed which ensures that the nonlinear model of the system is solution of the Lyapunov Equation and a general way to design the stabilizing supervisor is presented. Its implementation is well adapted to DC-power network as it permits to generate a n size stabilizing signal vector for a system with n loads. With this supervisor, the global large signal stability of the system is achieved.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A general active stabilizer for a multi-loads DC-power network\",\"authors\":\"P. Magne, B. Nahid-Mobarakeh, S. Pierfederici\",\"doi\":\"10.1109/IAS.2011.6074339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the More Electrical Aircraft (MEA) project, the many electric actuators situated in several part of the plane will impose to implement some complex DC-power network to ensure the energy transfer. In the MEA context, the design of the DC-networks should respect some constraints as size and weight which correspond to both practical and economical reasons. Heeding of these, optimization of the different passive elements like DC-bus capacitance and filtering inductance is a main issue. Unfortunately, it is known that the reduction of DC-bus capacitance may lead to instability of a HVDC network. In order to consider the instability risk in an application case, this paper will propose a centralized method to stabilize a multi-loads DC-network. The proposed method used the Lyapunov Theory to generate a global command law for a whole electric DC-network. A stabilizing feedback is designed which ensures that the nonlinear model of the system is solution of the Lyapunov Equation and a general way to design the stabilizing supervisor is presented. Its implementation is well adapted to DC-power network as it permits to generate a n size stabilizing signal vector for a system with n loads. With this supervisor, the global large signal stability of the system is achieved.\",\"PeriodicalId\":268988,\"journal\":{\"name\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2011.6074339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A general active stabilizer for a multi-loads DC-power network
In the More Electrical Aircraft (MEA) project, the many electric actuators situated in several part of the plane will impose to implement some complex DC-power network to ensure the energy transfer. In the MEA context, the design of the DC-networks should respect some constraints as size and weight which correspond to both practical and economical reasons. Heeding of these, optimization of the different passive elements like DC-bus capacitance and filtering inductance is a main issue. Unfortunately, it is known that the reduction of DC-bus capacitance may lead to instability of a HVDC network. In order to consider the instability risk in an application case, this paper will propose a centralized method to stabilize a multi-loads DC-network. The proposed method used the Lyapunov Theory to generate a global command law for a whole electric DC-network. A stabilizing feedback is designed which ensures that the nonlinear model of the system is solution of the Lyapunov Equation and a general way to design the stabilizing supervisor is presented. Its implementation is well adapted to DC-power network as it permits to generate a n size stabilizing signal vector for a system with n loads. With this supervisor, the global large signal stability of the system is achieved.