基于缺陷修复图像再合成的异常检测与分割

Wenting Dai, Marius Erdt, A. Sourin
{"title":"基于缺陷修复图像再合成的异常检测与分割","authors":"Wenting Dai, Marius Erdt, A. Sourin","doi":"10.1109/CW52790.2021.00023","DOIUrl":null,"url":null,"abstract":"Anomaly detection is a challenging task in data analysis, especially when it comes to unsupervised pixel-level segmentation of anomalies in images. In this paper, we present a novel multi-stage defect repaired image resynthesis framework for the detection and segmentation of anomalies in images. In contrast to the existing reconstruction-based approaches, our reconstruction is free from artifacts caused by defective regions so that the defects can be identified from the residual map between input samples and their resynthesized defect-eliminated outputs. Our method outperforms the state-of-art benchmarks in most categories using the publicly available MVTec dataset. Besides, the method also demonstrates an excellent capability of repairing defects in abnormal samples.","PeriodicalId":199618,"journal":{"name":"2021 International Conference on Cyberworlds (CW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection and Segmentation Based on Defect Repaired Image Resynthesis\",\"authors\":\"Wenting Dai, Marius Erdt, A. Sourin\",\"doi\":\"10.1109/CW52790.2021.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is a challenging task in data analysis, especially when it comes to unsupervised pixel-level segmentation of anomalies in images. In this paper, we present a novel multi-stage defect repaired image resynthesis framework for the detection and segmentation of anomalies in images. In contrast to the existing reconstruction-based approaches, our reconstruction is free from artifacts caused by defective regions so that the defects can be identified from the residual map between input samples and their resynthesized defect-eliminated outputs. Our method outperforms the state-of-art benchmarks in most categories using the publicly available MVTec dataset. Besides, the method also demonstrates an excellent capability of repairing defects in abnormal samples.\",\"PeriodicalId\":199618,\"journal\":{\"name\":\"2021 International Conference on Cyberworlds (CW)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW52790.2021.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW52790.2021.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常检测在数据分析中是一项具有挑战性的任务,特别是当涉及到图像中无监督的像素级异常分割时。本文提出了一种新的多阶段缺陷修复图像再合成框架,用于图像异常的检测和分割。与现有的基于重建的方法相比,我们的重建没有由缺陷区域引起的工件,因此可以从输入样本与其重新合成的缺陷消除输出之间的残差映射中识别缺陷。使用公开可用的MVTec数据集,我们的方法在大多数类别中优于最先进的基准测试。此外,该方法还显示了对异常样品缺陷的良好修复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection and Segmentation Based on Defect Repaired Image Resynthesis
Anomaly detection is a challenging task in data analysis, especially when it comes to unsupervised pixel-level segmentation of anomalies in images. In this paper, we present a novel multi-stage defect repaired image resynthesis framework for the detection and segmentation of anomalies in images. In contrast to the existing reconstruction-based approaches, our reconstruction is free from artifacts caused by defective regions so that the defects can be identified from the residual map between input samples and their resynthesized defect-eliminated outputs. Our method outperforms the state-of-art benchmarks in most categories using the publicly available MVTec dataset. Besides, the method also demonstrates an excellent capability of repairing defects in abnormal samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信