Hilbert-Huang变换在气体绝缘开关柜局部放电模式识别中的应用

Hong-Chan Chang, Feng‐Chang Gu, C. Kuo
{"title":"Hilbert-Huang变换在气体绝缘开关柜局部放电模式识别中的应用","authors":"Hong-Chan Chang, Feng‐Chang Gu, C. Kuo","doi":"10.1109/IPMHVC.2012.6518705","DOIUrl":null,"url":null,"abstract":"This study proposes gas insulated switchgear (GIS) partial discharge (PD) pattern classification based on the Hilbert-Huang transform (HHT). First, this study establishes four defect types of 15 kV GIS and uses a commercial high-frequency current transformer (HFCT) sensor to measure the electrical signals caused by the PD phenomenon. The HHT can represent instantaneous frequency components through empirical mode decomposition (EMD), and then transform into a 3D Hilbert energy spectrum. Thereafter, it extracts the energy feature parameters from the 3D Hilbert spectrum by using the back-propagation neural network (BPNN) for PD recognition. This study verifies the effectiveness of the proposed method by examining the identification ability of the BPNN using 160 sets of GIS-generated PD patterns. The experiment result shows the method can classify various defect types easily. The method can also be employed by the construction unit to verify the GIS quality and determine the GIS insulation status.","PeriodicalId":228441,"journal":{"name":"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying Hilbert-Huang transform on partialdischarge pattern recognition of a gas insulated switchgear\",\"authors\":\"Hong-Chan Chang, Feng‐Chang Gu, C. Kuo\",\"doi\":\"10.1109/IPMHVC.2012.6518705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes gas insulated switchgear (GIS) partial discharge (PD) pattern classification based on the Hilbert-Huang transform (HHT). First, this study establishes four defect types of 15 kV GIS and uses a commercial high-frequency current transformer (HFCT) sensor to measure the electrical signals caused by the PD phenomenon. The HHT can represent instantaneous frequency components through empirical mode decomposition (EMD), and then transform into a 3D Hilbert energy spectrum. Thereafter, it extracts the energy feature parameters from the 3D Hilbert spectrum by using the back-propagation neural network (BPNN) for PD recognition. This study verifies the effectiveness of the proposed method by examining the identification ability of the BPNN using 160 sets of GIS-generated PD patterns. The experiment result shows the method can classify various defect types easily. The method can also be employed by the construction unit to verify the GIS quality and determine the GIS insulation status.\",\"PeriodicalId\":228441,\"journal\":{\"name\":\"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPMHVC.2012.6518705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMHVC.2012.6518705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于Hilbert-Huang变换(HHT)的气体绝缘开关设备局部放电模式分类方法。首先,本研究建立了15 kV GIS的四种缺陷类型,并使用商用高频电流互感器(HFCT)传感器测量局部放电现象引起的电信号。HHT可以通过经验模态分解(EMD)表示瞬时频率分量,然后转化为三维希尔伯特能谱。然后,利用反向传播神经网络(BPNN)从三维Hilbert谱中提取能量特征参数进行PD识别。本研究通过使用160组gis生成的PD模式来检验BPNN的识别能力,验证了所提出方法的有效性。实验结果表明,该方法可以方便地对各种缺陷类型进行分类。该方法也可用于施工单位对GIS质量的验证和GIS绝缘状态的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Hilbert-Huang transform on partialdischarge pattern recognition of a gas insulated switchgear
This study proposes gas insulated switchgear (GIS) partial discharge (PD) pattern classification based on the Hilbert-Huang transform (HHT). First, this study establishes four defect types of 15 kV GIS and uses a commercial high-frequency current transformer (HFCT) sensor to measure the electrical signals caused by the PD phenomenon. The HHT can represent instantaneous frequency components through empirical mode decomposition (EMD), and then transform into a 3D Hilbert energy spectrum. Thereafter, it extracts the energy feature parameters from the 3D Hilbert spectrum by using the back-propagation neural network (BPNN) for PD recognition. This study verifies the effectiveness of the proposed method by examining the identification ability of the BPNN using 160 sets of GIS-generated PD patterns. The experiment result shows the method can classify various defect types easily. The method can also be employed by the construction unit to verify the GIS quality and determine the GIS insulation status.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信