使用受限静态和动态特征预测流感爆发

Soumen Dofadar, M. Venkatesan
{"title":"使用受限静态和动态特征预测流感爆发","authors":"Soumen Dofadar, M. Venkatesan","doi":"10.1109/ICCTCT.2018.8551177","DOIUrl":null,"url":null,"abstract":"Twitter is a free social networking and micro-blogging service that gives the opportunity to write and read each others tweet to its 330 million users all over the world with a limitation of 280 characters in each tweet. As a result, Twitter can provide a huge amount of data regarding what is happening at a particular time in all over the world. One of those is epidemic event detection and prediction from the twitter data. In this study, the use of Twitter data to detect influenza outbreak is examined. The result from this experiment shows that estimate of influenza outbreak can be derived from twitter correctly combining constrained supervised and unsupervised features and then using a prediction model.","PeriodicalId":344188,"journal":{"name":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Influenza Outbreak using Constrained Static and dynamic Feature\",\"authors\":\"Soumen Dofadar, M. Venkatesan\",\"doi\":\"10.1109/ICCTCT.2018.8551177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is a free social networking and micro-blogging service that gives the opportunity to write and read each others tweet to its 330 million users all over the world with a limitation of 280 characters in each tweet. As a result, Twitter can provide a huge amount of data regarding what is happening at a particular time in all over the world. One of those is epidemic event detection and prediction from the twitter data. In this study, the use of Twitter data to detect influenza outbreak is examined. The result from this experiment shows that estimate of influenza outbreak can be derived from twitter correctly combining constrained supervised and unsupervised features and then using a prediction model.\",\"PeriodicalId\":344188,\"journal\":{\"name\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTCT.2018.8551177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTCT.2018.8551177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Twitter是一个免费的社交网络和微博服务,它为全球3.3亿用户提供了编写和阅读彼此推文的机会,每条推文的限制为280个字符。因此,Twitter可以提供关于世界各地特定时间正在发生的事情的大量数据。其中之一是从twitter数据中检测和预测流行病事件。在这项研究中,使用Twitter数据检测流感爆发进行了检查。实验结果表明,twitter可以正确地结合约束监督和无监督特征,然后使用预测模型对流感爆发进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Influenza Outbreak using Constrained Static and dynamic Feature
Twitter is a free social networking and micro-blogging service that gives the opportunity to write and read each others tweet to its 330 million users all over the world with a limitation of 280 characters in each tweet. As a result, Twitter can provide a huge amount of data regarding what is happening at a particular time in all over the world. One of those is epidemic event detection and prediction from the twitter data. In this study, the use of Twitter data to detect influenza outbreak is examined. The result from this experiment shows that estimate of influenza outbreak can be derived from twitter correctly combining constrained supervised and unsupervised features and then using a prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信