克尔非线性对单模梯度折射率光纤无因次标量和矢量传播常数的影响:一种简单而准确的估计方法

Tilak Mukherjee, Angshuman Majumdar, S. Gangopadhyay
{"title":"克尔非线性对单模梯度折射率光纤无因次标量和矢量传播常数的影响:一种简单而准确的估计方法","authors":"Tilak Mukherjee, Angshuman Majumdar, S. Gangopadhyay","doi":"10.1109/VLSIDCS47293.2020.9179865","DOIUrl":null,"url":null,"abstract":"A simple but accurate power series expression for fundamental mode of single- mode graded index fiber is employed here for the estimation of dimensionless scalar and vector propagation constants in presence and absence of Kerr non linearity. Chebyshev formalism is employed for the formulation of the power series. In case of concerned prediction in presence of Kerr non linearity, the formalism requires application of method of iteration. Single -mode parabolic index profile fibers with appropriate V number values are considered for our present study. Our results match well with exact results obtained using rigorous finite element method. Our formalism essentially needs considerably less computation. Thus, our simple but accurate formalism can further be extended in the analysis of other nonlinear fibers and their propagation characteristics.","PeriodicalId":446218,"journal":{"name":"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kerr Nonlinearity Effect on Dimensionless Scalar and Vector Propagation Constants of Single-Mode Graded Index Fiber: Estimation by a Simple but Accurate Method\",\"authors\":\"Tilak Mukherjee, Angshuman Majumdar, S. Gangopadhyay\",\"doi\":\"10.1109/VLSIDCS47293.2020.9179865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple but accurate power series expression for fundamental mode of single- mode graded index fiber is employed here for the estimation of dimensionless scalar and vector propagation constants in presence and absence of Kerr non linearity. Chebyshev formalism is employed for the formulation of the power series. In case of concerned prediction in presence of Kerr non linearity, the formalism requires application of method of iteration. Single -mode parabolic index profile fibers with appropriate V number values are considered for our present study. Our results match well with exact results obtained using rigorous finite element method. Our formalism essentially needs considerably less computation. Thus, our simple but accurate formalism can further be extended in the analysis of other nonlinear fibers and their propagation characteristics.\",\"PeriodicalId\":446218,\"journal\":{\"name\":\"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIDCS47293.2020.9179865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIDCS47293.2020.9179865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用单模梯度折射率光纤基模的一个简单而精确的幂级数表达式来估计存在和不存在克尔非线性时的无因次标量和矢量传播常数。幂级数的表达式采用切比雪夫形式。对于存在克尔非线性的相关预测,其形式化要求采用迭代法。本文研究了具有合适V值的单模抛物线折射率型光纤。我们的计算结果与用严格的有限元法得到的精确结果吻合得很好。我们的形式本质上需要的计算要少得多。因此,我们的简单而准确的形式可以进一步推广到其他非线性光纤及其传播特性的分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kerr Nonlinearity Effect on Dimensionless Scalar and Vector Propagation Constants of Single-Mode Graded Index Fiber: Estimation by a Simple but Accurate Method
A simple but accurate power series expression for fundamental mode of single- mode graded index fiber is employed here for the estimation of dimensionless scalar and vector propagation constants in presence and absence of Kerr non linearity. Chebyshev formalism is employed for the formulation of the power series. In case of concerned prediction in presence of Kerr non linearity, the formalism requires application of method of iteration. Single -mode parabolic index profile fibers with appropriate V number values are considered for our present study. Our results match well with exact results obtained using rigorous finite element method. Our formalism essentially needs considerably less computation. Thus, our simple but accurate formalism can further be extended in the analysis of other nonlinear fibers and their propagation characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信