基于可穿戴传感器的闭链姿态估计

V. Joukov, J. Lin, D. Kulić
{"title":"基于可穿戴传感器的闭链姿态估计","authors":"V. Joukov, J. Lin, D. Kulić","doi":"10.1109/Humanoids43949.2019.9035015","DOIUrl":null,"url":null,"abstract":"Inertial measurement unit sensors are commonly used for human pose estimation. However, a systematic and robust method to incorporate position and orientation constraints in the kinematic structure during environmental contact is lacking. In this paper, we estimate the pose using the extended Kalman filter, linearize the closed loop constraints about the predicted Kalman filter state, then project the unconstrained state estimate onto the constrained space. Multiple constraints that are representative of real world scenarios are derived. The proposed technique is tested on two human movement datasets and demonstrated to outperform unconstrained Kalman filter.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Closed-chain Pose Estimation from Wearable Sensors\",\"authors\":\"V. Joukov, J. Lin, D. Kulić\",\"doi\":\"10.1109/Humanoids43949.2019.9035015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inertial measurement unit sensors are commonly used for human pose estimation. However, a systematic and robust method to incorporate position and orientation constraints in the kinematic structure during environmental contact is lacking. In this paper, we estimate the pose using the extended Kalman filter, linearize the closed loop constraints about the predicted Kalman filter state, then project the unconstrained state estimate onto the constrained space. Multiple constraints that are representative of real world scenarios are derived. The proposed technique is tested on two human movement datasets and demonstrated to outperform unconstrained Kalman filter.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

惯性测量单元传感器通常用于人体姿态估计。然而,在环境接触过程中,缺乏一种系统的、鲁棒的方法来结合运动结构的位置和方向约束。在本文中,我们使用扩展卡尔曼滤波器估计姿态,线性化预测卡尔曼滤波器状态的闭环约束,然后将无约束状态估计投影到约束空间中。派生出代表真实世界场景的多个约束。在两个人体运动数据集上进行了测试,结果表明该方法优于无约束卡尔曼滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-chain Pose Estimation from Wearable Sensors
Inertial measurement unit sensors are commonly used for human pose estimation. However, a systematic and robust method to incorporate position and orientation constraints in the kinematic structure during environmental contact is lacking. In this paper, we estimate the pose using the extended Kalman filter, linearize the closed loop constraints about the predicted Kalman filter state, then project the unconstrained state estimate onto the constrained space. Multiple constraints that are representative of real world scenarios are derived. The proposed technique is tested on two human movement datasets and demonstrated to outperform unconstrained Kalman filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信