{"title":"门尺寸的功率与延迟:冲突的目标?","authors":"S. Sapatnekar, Weitong Chuang","doi":"10.1109/ICCAD.1995.480157","DOIUrl":null,"url":null,"abstract":"The problem of sizing gates for power-delay tradeoffs is of great interest to designers. In this work, the theoretical basis for gate sizing under delay and power considerations is presented, and results on a practical implementation are presented. The dynamic power as well as the short-circuit power are modeled, using notions of delay and transition density, and the optimization problem is formulated using notions of convex programming. Previous approaches have not modeled the short circuit power, and our experimental results show that the incorporation of this leads to counter-intuitive results where the minimum power circuit is not necessarily the minimum-sized circuit.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Power vs. delay in gate sizing: conflicting objectives?\",\"authors\":\"S. Sapatnekar, Weitong Chuang\",\"doi\":\"10.1109/ICCAD.1995.480157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of sizing gates for power-delay tradeoffs is of great interest to designers. In this work, the theoretical basis for gate sizing under delay and power considerations is presented, and results on a practical implementation are presented. The dynamic power as well as the short-circuit power are modeled, using notions of delay and transition density, and the optimization problem is formulated using notions of convex programming. Previous approaches have not modeled the short circuit power, and our experimental results show that the incorporation of this leads to counter-intuitive results where the minimum power circuit is not necessarily the minimum-sized circuit.\",\"PeriodicalId\":367501,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"383 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1995.480157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power vs. delay in gate sizing: conflicting objectives?
The problem of sizing gates for power-delay tradeoffs is of great interest to designers. In this work, the theoretical basis for gate sizing under delay and power considerations is presented, and results on a practical implementation are presented. The dynamic power as well as the short-circuit power are modeled, using notions of delay and transition density, and the optimization problem is formulated using notions of convex programming. Previous approaches have not modeled the short circuit power, and our experimental results show that the incorporation of this leads to counter-intuitive results where the minimum power circuit is not necessarily the minimum-sized circuit.