学习新的对象部件模型用于对象分类

Sima Soltanpour, H. Ebrahimnezhad
{"title":"学习新的对象部件模型用于对象分类","authors":"Sima Soltanpour, H. Ebrahimnezhad","doi":"10.1109/ISTEL.2010.5734131","DOIUrl":null,"url":null,"abstract":"We present a new method to learn the model based on object parts extraction and grammar which can be applied to classification and recognition. Our approach is invariant to the scale and rotation of the objects. We use Structural Context feature to detect object parts. It is done comparing SC histograms of the model and image. We extract oriented triplets from centers of detected parts. We define grammar for these parts using normalize distances and angles between them. We propose and compare two alternative implementations using different classifiers: Hidden Markov Model with mixture of Gaussian outputs (MHMM) and Adaptive Neuro-Fuzzy Inference system (ANFIS) to learn this grammar and estimate parameters of the model for each object class. The proposed method is computationally efficient and it is invariant to scale and rotation. Experimental results demonstrate the privileged performance of the proposed approach against other methods.","PeriodicalId":306663,"journal":{"name":"2010 5th International Symposium on Telecommunications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning novel object parts model for object categorization\",\"authors\":\"Sima Soltanpour, H. Ebrahimnezhad\",\"doi\":\"10.1109/ISTEL.2010.5734131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method to learn the model based on object parts extraction and grammar which can be applied to classification and recognition. Our approach is invariant to the scale and rotation of the objects. We use Structural Context feature to detect object parts. It is done comparing SC histograms of the model and image. We extract oriented triplets from centers of detected parts. We define grammar for these parts using normalize distances and angles between them. We propose and compare two alternative implementations using different classifiers: Hidden Markov Model with mixture of Gaussian outputs (MHMM) and Adaptive Neuro-Fuzzy Inference system (ANFIS) to learn this grammar and estimate parameters of the model for each object class. The proposed method is computationally efficient and it is invariant to scale and rotation. Experimental results demonstrate the privileged performance of the proposed approach against other methods.\",\"PeriodicalId\":306663,\"journal\":{\"name\":\"2010 5th International Symposium on Telecommunications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2010.5734131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2010.5734131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于对象部分提取和语法的模型学习方法,该方法可以应用于分类和识别。我们的方法是不变的规模和旋转的对象。我们使用结构上下文特征来检测对象部分。比较了模型和图像的SC直方图。我们从被检测部件的中心提取有向三元组。我们使用规范化它们之间的距离和角度来定义这些部分的语法。我们提出并比较了使用不同分类器的两种替代实现:混合高斯输出的隐马尔可夫模型(MHMM)和自适应神经模糊推理系统(ANFIS)来学习该语法并估计每个对象类的模型参数。该方法计算效率高,且对尺度和旋转不变性。实验结果表明,与其他方法相比,该方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning novel object parts model for object categorization
We present a new method to learn the model based on object parts extraction and grammar which can be applied to classification and recognition. Our approach is invariant to the scale and rotation of the objects. We use Structural Context feature to detect object parts. It is done comparing SC histograms of the model and image. We extract oriented triplets from centers of detected parts. We define grammar for these parts using normalize distances and angles between them. We propose and compare two alternative implementations using different classifiers: Hidden Markov Model with mixture of Gaussian outputs (MHMM) and Adaptive Neuro-Fuzzy Inference system (ANFIS) to learn this grammar and estimate parameters of the model for each object class. The proposed method is computationally efficient and it is invariant to scale and rotation. Experimental results demonstrate the privileged performance of the proposed approach against other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信