S. Chávez-Cerda, M. Meneses-Nava, V. Sanchez-Villicaña, J. Sánchez-Mondragón
{"title":"多维非线性薛定谔方程的振动解","authors":"S. Chávez-Cerda, M. Meneses-Nava, V. Sanchez-Villicaña, J. Sánchez-Mondragón","doi":"10.1364/nlgw.1998.nsnps.p5","DOIUrl":null,"url":null,"abstract":"We show analytically that there can exist oscillating bound states of the multidimensional nonlinear Schroedinger equations with Kerr and saturable nonlinearity which are breather-like solutions. The solutions have a rare peculiarity, the oscillating behavior takes place between the widths, with the amplitude kept almost constant. We confirm numerically our results.","PeriodicalId":262564,"journal":{"name":"Nonlinear Guided Waves and Their Applications","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillating solutions of the multidimensional nonlinear Schroedinger equation\",\"authors\":\"S. Chávez-Cerda, M. Meneses-Nava, V. Sanchez-Villicaña, J. Sánchez-Mondragón\",\"doi\":\"10.1364/nlgw.1998.nsnps.p5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show analytically that there can exist oscillating bound states of the multidimensional nonlinear Schroedinger equations with Kerr and saturable nonlinearity which are breather-like solutions. The solutions have a rare peculiarity, the oscillating behavior takes place between the widths, with the amplitude kept almost constant. We confirm numerically our results.\",\"PeriodicalId\":262564,\"journal\":{\"name\":\"Nonlinear Guided Waves and Their Applications\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Guided Waves and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/nlgw.1998.nsnps.p5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Guided Waves and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nlgw.1998.nsnps.p5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oscillating solutions of the multidimensional nonlinear Schroedinger equation
We show analytically that there can exist oscillating bound states of the multidimensional nonlinear Schroedinger equations with Kerr and saturable nonlinearity which are breather-like solutions. The solutions have a rare peculiarity, the oscillating behavior takes place between the widths, with the amplitude kept almost constant. We confirm numerically our results.