M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, H. Kondo
{"title":"低功耗多传感器系统,具有任务调度和自主待机模式过渡控制,用于物联网应用","authors":"M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, H. Kondo","doi":"10.1109/CoolChips.2017.7946385","DOIUrl":null,"url":null,"abstract":"The low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications are proposed, which achieves almost zero standby power at the no-operation modes. A power management scheme with activity localization can reduce the number of transitions between power-on and power-off modes with re-scheduling and bundling task procedures. And autonomously standby mode transition control selects the optimum standby mode of microcontrollers, reducing total power consumption. We demonstrate with evaluation board as a use case of IoT applications, observing 91% power reductions by adopting task scheduling and autonomously standby mode transition control combination.","PeriodicalId":439955,"journal":{"name":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications\",\"authors\":\"M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, H. Kondo\",\"doi\":\"10.1109/CoolChips.2017.7946385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications are proposed, which achieves almost zero standby power at the no-operation modes. A power management scheme with activity localization can reduce the number of transitions between power-on and power-off modes with re-scheduling and bundling task procedures. And autonomously standby mode transition control selects the optimum standby mode of microcontrollers, reducing total power consumption. We demonstrate with evaluation board as a use case of IoT applications, observing 91% power reductions by adopting task scheduling and autonomously standby mode transition control combination.\",\"PeriodicalId\":439955,\"journal\":{\"name\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2017.7946385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2017.7946385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications
The low-power multi-sensor system with task scheduling and autonomous standby mode transition control for IoT applications are proposed, which achieves almost zero standby power at the no-operation modes. A power management scheme with activity localization can reduce the number of transitions between power-on and power-off modes with re-scheduling and bundling task procedures. And autonomously standby mode transition control selects the optimum standby mode of microcontrollers, reducing total power consumption. We demonstrate with evaluation board as a use case of IoT applications, observing 91% power reductions by adopting task scheduling and autonomously standby mode transition control combination.