前缀树数据结构在多级频繁模式挖掘中的应用

M. Pater, D. Popescu
{"title":"前缀树数据结构在多级频繁模式挖掘中的应用","authors":"M. Pater, D. Popescu","doi":"10.1109/SOFA.2007.4318326","DOIUrl":null,"url":null,"abstract":"Finding frequent itemsets is one of the most investigated fields of data mining. In this paper, the horizon of frequent pattern mining is expanded by extending single-level algorithms for mining multi-level frequent patterns. There are presented two algorithms that extract multi-level frequent patterns from databases using two efficient data structures: FP-tree and AFOP-tree, to represent the conditional databases. A comparison study is made between using these data structures and algorithms and Apriori algorithm to reflect their benefits. The compared algorithms are presented together with some experimental data that leads to the final conclusions.","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Benefits of Using Prefix Tree Data Structure in Multi-Level Frequent Pattern Mining\",\"authors\":\"M. Pater, D. Popescu\",\"doi\":\"10.1109/SOFA.2007.4318326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding frequent itemsets is one of the most investigated fields of data mining. In this paper, the horizon of frequent pattern mining is expanded by extending single-level algorithms for mining multi-level frequent patterns. There are presented two algorithms that extract multi-level frequent patterns from databases using two efficient data structures: FP-tree and AFOP-tree, to represent the conditional databases. A comparison study is made between using these data structures and algorithms and Apriori algorithm to reflect their benefits. The compared algorithms are presented together with some experimental data that leads to the final conclusions.\",\"PeriodicalId\":205589,\"journal\":{\"name\":\"2007 2nd International Workshop on Soft Computing Applications\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Workshop on Soft Computing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOFA.2007.4318326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFA.2007.4318326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

查找频繁项集是数据挖掘中研究最多的领域之一。本文通过扩展单级算法来挖掘多层次的频繁模式,从而扩展了频繁模式挖掘的范围。提出了两种从数据库中提取多级频繁模式的算法,采用两种高效的数据结构:FP-tree和AFOP-tree来表示条件数据库。并将使用这些数据结构和算法与Apriori算法进行了比较研究,以反映它们的优点。比较了几种算法,并给出了一些实验数据,得出了最后的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Benefits of Using Prefix Tree Data Structure in Multi-Level Frequent Pattern Mining
Finding frequent itemsets is one of the most investigated fields of data mining. In this paper, the horizon of frequent pattern mining is expanded by extending single-level algorithms for mining multi-level frequent patterns. There are presented two algorithms that extract multi-level frequent patterns from databases using two efficient data structures: FP-tree and AFOP-tree, to represent the conditional databases. A comparison study is made between using these data structures and algorithms and Apriori algorithm to reflect their benefits. The compared algorithms are presented together with some experimental data that leads to the final conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信