自然语言表示作为位置识别的特征

A. Lee, H. Myung
{"title":"自然语言表示作为位置识别的特征","authors":"A. Lee, H. Myung","doi":"10.1109/ur55393.2022.9826253","DOIUrl":null,"url":null,"abstract":"Visual information is rich in content, and robots require computer vision techniques to encode images into information to utilize the images. Robot vision transforms the image into descriptors using predefined patterns, whether defined by handcrafted or learned methods. However, the image descriptors are not explainable to human intelligence and limit human-robot interaction upon vision tasks. On the other hand, recent studies have discovered an efficient and expandable method of transforming an image into natural language forms. With visual transformers, the context in an image is translated into natural language representations. To create an image representation both understandable to humans and artificial intelligence, in this paper, we present a method of using the language-image model as natural representations for robotic place recognition tasks.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Language Representation as Features for Place Recognition\",\"authors\":\"A. Lee, H. Myung\",\"doi\":\"10.1109/ur55393.2022.9826253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual information is rich in content, and robots require computer vision techniques to encode images into information to utilize the images. Robot vision transforms the image into descriptors using predefined patterns, whether defined by handcrafted or learned methods. However, the image descriptors are not explainable to human intelligence and limit human-robot interaction upon vision tasks. On the other hand, recent studies have discovered an efficient and expandable method of transforming an image into natural language forms. With visual transformers, the context in an image is translated into natural language representations. To create an image representation both understandable to humans and artificial intelligence, in this paper, we present a method of using the language-image model as natural representations for robotic place recognition tasks.\",\"PeriodicalId\":398742,\"journal\":{\"name\":\"2022 19th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ur55393.2022.9826253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ur55393.2022.9826253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉信息内容丰富,机器人需要利用计算机视觉技术将图像编码为信息。机器人视觉使用预定义的模式将图像转换为描述符,无论是手工还是学习方法定义的。然而,图像描述符无法解释人类智能,并且限制了人机在视觉任务上的交互。另一方面,最近的研究发现了一种将图像转换为自然语言形式的有效且可扩展的方法。使用视觉转换器,图像中的上下文被翻译成自然语言表示。为了创建人类和人工智能都可以理解的图像表示,在本文中,我们提出了一种使用语言图像模型作为机器人位置识别任务的自然表示的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Language Representation as Features for Place Recognition
Visual information is rich in content, and robots require computer vision techniques to encode images into information to utilize the images. Robot vision transforms the image into descriptors using predefined patterns, whether defined by handcrafted or learned methods. However, the image descriptors are not explainable to human intelligence and limit human-robot interaction upon vision tasks. On the other hand, recent studies have discovered an efficient and expandable method of transforming an image into natural language forms. With visual transformers, the context in an image is translated into natural language representations. To create an image representation both understandable to humans and artificial intelligence, in this paper, we present a method of using the language-image model as natural representations for robotic place recognition tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信