{"title":"一种零射击识别的属性学习方法","authors":"Ramtin Yazdanian, Seyed Mohsen Shojaee, Mahdieh Soleymani Baghshah","doi":"10.1109/IRANIANCEE.2017.7985434","DOIUrl":null,"url":null,"abstract":"Recently, the problem of integrating side information about classes has emerged in the learning settings like zero-shot learning. Although using multiple sources of information about the input space has been investigated in the last decade and many multi-view and multi-modal learning methods have already been introduced, the attribute learning for classes (output space) is a new problem that has been attended in the last few years. In this paper, we propose an attribute learning method that can use different sources of descriptions for classes to find new attributes that are more proper to be used as class signatures. Experimental results show that the learned attributes by the proposed method can improve the accuracy of the state-of-the-art zero-shot learning methods.","PeriodicalId":161929,"journal":{"name":"2017 Iranian Conference on Electrical Engineering (ICEE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An attribute learning method for zero-shot recognition\",\"authors\":\"Ramtin Yazdanian, Seyed Mohsen Shojaee, Mahdieh Soleymani Baghshah\",\"doi\":\"10.1109/IRANIANCEE.2017.7985434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the problem of integrating side information about classes has emerged in the learning settings like zero-shot learning. Although using multiple sources of information about the input space has been investigated in the last decade and many multi-view and multi-modal learning methods have already been introduced, the attribute learning for classes (output space) is a new problem that has been attended in the last few years. In this paper, we propose an attribute learning method that can use different sources of descriptions for classes to find new attributes that are more proper to be used as class signatures. Experimental results show that the learned attributes by the proposed method can improve the accuracy of the state-of-the-art zero-shot learning methods.\",\"PeriodicalId\":161929,\"journal\":{\"name\":\"2017 Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2017.7985434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2017.7985434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An attribute learning method for zero-shot recognition
Recently, the problem of integrating side information about classes has emerged in the learning settings like zero-shot learning. Although using multiple sources of information about the input space has been investigated in the last decade and many multi-view and multi-modal learning methods have already been introduced, the attribute learning for classes (output space) is a new problem that has been attended in the last few years. In this paper, we propose an attribute learning method that can use different sources of descriptions for classes to find new attributes that are more proper to be used as class signatures. Experimental results show that the learned attributes by the proposed method can improve the accuracy of the state-of-the-art zero-shot learning methods.